【题目】随机将1,2,…,2n(n∈N*,n≥2)这2n个连续正整数分成A,B两组,每组n个数.A组最小数为a1,最大数为a2;B组最小数为b1,最大数为b2,记ξ=a2-a1,η=b2-b1.
(1)当n=3时,求ξ的分布列和数学期望;
(2)令C表示事件“ξ与η的取值恰好相等”,求事件C发生的概率P(C);
(3)对(2)中的事件C,
表示C的对立事件,判断P(C)和P(
)的大小关系,并说明理由.
【答案】(1) 见解析;(2) 见解析;(3) 见解析.
【解析】试题分析:(1)写出变量的可能取值及对应的概率值,即可列出分布列,从而求得数学期望;
(2)求出总基本事件个数及满足条件的事件个数,即可求解;
(3)写出两个概率,用数学归纳法求解即可。
试题解析:(1)当n=3时,ξ的所有可能取值为2,3,4,5.
将6个正整数平均分成A、B两组,不同的分组方法共有C=20种,所以ξ的分布列为
ξ | 2 | 3 | 4 | 5 |
P |
|
|
|
|
E(ξ)=2×
+3×
+4×
+5×
=
.
(2)ξ和η恰好相等的所有可能取值为:n-1,n,n+1,…,2n-2.
又ξ和η恰好相等且等于n-1时,不同的分组方法有2种;
ξ和η恰好相等且等于n时,不同的分组方法有2种;
ξ和η恰好相等且等于n+k(k=1,2,…,n-2)(n≥3)时,不同的分组方法有2C
种;
∴当n=2时,P(C)=
=
,
当n≥3时,P(C)=
(3)由(2)知,当n=2时,P(
)=
,因此P(C)>P(
).
而当n≥3时,P(C)<P(
),理由如下:
P(C)<P(
)等价于4(2+![]()
)<C
.①
用数学归纳法来证明:
1°当n=3时,①式左边=4(2+C)=4(2+2)=16,①式右边=C=20,所以①式成立.
2°假设n=m(m≥3)时①式成立,
即4(2+![]()
)<C
成立,
那么,当n=m+1时,
左边=4(2+![]()
)
=4(2+![]()
)+4C
<C
+4C![]()
=
+![]()
=![]()
<![]()
=C
·
<C
=右边.
即当n=m+1时①式也成立.
综合1°,2°得:对于n≥3的所有正整数,都有P(C)<P(
)成立.
科目:高中数学 来源: 题型:
【题目】北京时间3月15日下午,谷歌围棋人工智能
与韩国棋手李世石进行最后一轮较量,
获得本场比赛胜利,最终人机大战总比分定格
.人机大战也引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.
(Ⅰ)根据已知条件完成下面的列联表,并据此资料你是否有
的把握认为“围棋迷”与性别有关?
![]()
非围棋迷 | 围棋迷 | 合计 | |
男 | |||
女 | 10 | 55 | |
合计 |
(Ⅱ)将上述调查所得到的频率视为概率,现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名淡定生中的“围棋迷”人数为
。若每次抽取的结果是相互独立的,求
的分布列,期望
和方差
.
附:
,其中
.
| 0.05 | 0.01 |
| 3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】邗江中学高二年级某班某小组共10人,利用寒假参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中选出2人作为该组代表参加座谈会.
(1)记“选出2人参加义工活动的次数之和为4”为事件
,求事件
发生的概率;
(2)设
为选出2人参加义工活动次数之差的绝对值,求随机变量
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数),在以原点为极点,
轴正半轴为极轴的极坐标系中,直线
的极坐标方程为
.
(1)求
的普通方程和
的倾斜角;
(2)设点
和
交于
两点,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
.
(Ⅰ)求曲线
在点
处的切线的斜率;
(Ⅱ)判断方程
(
为
的导数)在区间
内的根的个数,说明理由;
(Ⅲ)若函数
在区间
内有且只有一个极值点,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com