【题目】在平面直角坐标系中,设点
,
,
(其中
表示a、b中的较大数)为
、
两点的“切比雪夫距离”.
(1)若
,Q为直线
上动点,求P、Q两点“切比雪夫距离”的最小值;
(2)定点
,动点
满足![]()
,请求出P点所在的曲线所围成图形的面积.
科目:高中数学 来源: 题型:
【题目】如图所示,曲线C由部分椭圆C1:
+
=1(a>b>0,y≥0)和部分抛物线C2:y=-x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1所在椭圆的离心率为
.
![]()
(1)求a,b的值;
(2)过点B的直线l与C1,C2分别交于点P,Q(P,Q,A,B中任意两点均不重合),若AP⊥AQ,求直线l
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:![]()
的焦距为
,短半轴的长为2,过点P(-2,1)且斜率为1的直线l与椭圆C交于A,B两点.
(1)求椭圆C的方程;
(2)求弦AB的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出1盒该产品获利润50元;未售出的产品,每盒亏损30元
根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示,该同学为这个开学季购进了160盒该产品,以
单位:盒,
表示这个开学季内的市场需求量,
单位:元
表示这个开学季内经销该产品的利润
![]()
根据直方图估计这个开学季内市场需求量x的平均数和众数;
将y表示为x的函数;
根据直方图估计利润不少于4800元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆
的离心率为
,右准线方程为
,
、
分别是椭圆
的左、右顶点,过右焦点
且斜率为
的直线
与椭圆
相交于
,
两点.
![]()
(1)求椭圆
的标准方程.
(2)记
、
的面积分别为
、
,若
,求
的值;
(3)设线段
的中点为
,直线
与右准线相交于点
,记直线
、
、
的斜率分别为
、
、
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】A地的天气预报显示,A地在今后的三天中,每一天有强浓雾的概率为
,现用随机模拟的方法估计这三天中至少有两天有强浓雾的概率,先利用计算器产生
之间整数值的随机数,并用0,1,2,3,4,5,6表示没有强浓雾,用7,8,9表示有强浓雾,再以每3个随机数作为一组,代表三天的天气情况,产生了如下20组随机数:
402 978 191 925 273 842 812 479 569 683
231 357 394 027 506 588 730 113 537 779
则这三天中至少有两天有强浓雾的概率近似为
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
为空间中三条互相平行且两两间的距离分别为4、5、6的直线,给出下列三个结论:
①存在
使得
是直角三角形;
②存在
使得
是等边三角形;
③三条直线上存在四点
使得四面体
为在一个顶点处的三条棱两两互相垂直的四面体,其中,所有正确结论的个数是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设一元二次方程Ax2+Bx+C=0,根据下列条件分别求解:
(1)若A=1,B、C是1枚骰子先后掷两次出现的点数,求方程有实数根的概率;
(2)若B=-A,C=A-3,且方程有实数根,求方程至少有一个非正实数根的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
,点
,
中恰有三点在椭圆
上.
![]()
(1)求椭圆
的方程;
(2)设
是椭圆
上的动点,由原点
向圆
引两条切线,分别交椭圆于点
,若直线
的斜率存在,并记为
,试问
的面积是否为定值?若是,求出该值;若不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com