【题目】设
为空间中三条互相平行且两两间的距离分别为4、5、6的直线,给出下列三个结论:
①存在
使得
是直角三角形;
②存在
使得
是等边三角形;
③三条直线上存在四点
使得四面体
为在一个顶点处的三条棱两两互相垂直的四面体,其中,所有正确结论的个数是( )
A.0B.1C.2D.3
【答案】C
【解析】
本题利用画图结合运动变化的思想进行分析.我们不妨先将 A、B、C 按如图所示放置,容易看出此时 BC<AB=AC.
现在,我们将 A 和 B 往上移,并且总保持 AB=AC(这是可以做到的,只要 A、B 的速度满足一定关系),而当A、B 移得很高很高时,就得到①和②都是正确的.至于③,结合条件利用反证法的思想方法进行说明即可
我们不妨先将 A、B、C按如图所示放置.
容易看出此时BC<AB=AC.
现在,将A和B往上移,
并且总保持AB=AC(这是可以做到的,只要A、B的速度满足一定关系),
而当A、B 移得很高很高时,
不难想象△ABC 将会变得很扁,
也就是会变成顶角A“非常钝”的一个等腰钝角三角形.
于是,在移动过程中,
总有一刻,使△ABC成为等边三角形,
亦总有另一刻,使△ABC成为直角三角形(而且还是等腰的).
这样,就得到①和②都是正确的.
至于③,如图所示.
为方便书写,称三条两两垂直的棱所公共顶点为.
假设A是,
那么由 AD⊥AB,AD⊥AC,
知 L3⊥△ABC,
从而△ABC三边的长就是三条直线的距离4、5、6,
这就与AB⊥AC 矛盾.
同理可知D是时也矛盾;
假设C是,
那么由BC⊥CA,BC⊥CD,
知BC⊥△CAD,
而 l1∥△CAD,故 BC⊥l1,
从而BC为l1与l2的距离,
于是 EF∥BC,EF=BC,这样就得到EF⊥FG,矛盾.
同理可知B是时也矛盾.
综上,不存在四点Ai(i=1,2,3,4),
使得四面体A1A2A3A4为在一个顶点处的三条棱两两互相垂直的四面体.
故选C.
![]()
![]()
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px(p>0)的焦点F,直线y=4与y轴的交点为P,与抛物线C的交点为Q,且|QF|=2|PQ|.
(1)求p的值;
(2)已知点T(t,-2)为C上一点,M,N是C上异于点T的两点,且满足直线TM和直线TN的斜率之和为
,证明直线MN恒过定点,并求出定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
九章算术
给出求羡除体积的“术”是:“并三广,以深乘之,又以袤乘之,六而一”,其中的“广”指羡除的三条平行侧棱的长,“深”指一条侧棱到另两条侧棱所在平面的距离,“袤”指这两条侧棱所在平行线之间的距离,用现代语言描述:在羡除
中,
,
,
,
,两条平行线
与
间的距离为h,直线
到平面
的距离为
,则该羡除的体积为
已知某羡除的三视图如图所示,则该羡除的体积为
![]()
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,设点
,
,
(其中
表示a、b中的较大数)为
、
两点的“切比雪夫距离”.
(1)若
,Q为直线
上动点,求P、Q两点“切比雪夫距离”的最小值;
(2)定点
,动点
满足![]()
,请求出P点所在的曲线所围成图形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
:
,点
,
.
(1)若线段
的中垂线与圆
相切,求实数
的值;
(2)过直线
上的点
引圆
的两条切线,切点为
,若
,则称点
为“好点”. 若直线
上有且只有两个“好点”,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四面体ABCD中,DA=DB=DC=
且DA、DB、DC两两互相垂直,点
是△ABC的中心.
![]()
(1)求直线DA与平面ABC所成角的大小(用反三角函数表示);
(2)过
作OE⊥AD,垂足为E,求ΔDEO绕直线DO旋转一周所形成的几何体的体积;
(3)将△DAO绕直线DO旋转一周,则在旋转过程中,直线DA与直线BC所成角记为
,求
的取值范图.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形
是菱形,
是矩形,平面
平面
,
,
,
,
为
的中点.
![]()
(1)求证:
∥平面
;
(2)在线段
上是否存在点
,使二面角
的大小为
?若存在,求出
的长;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com