【题目】已知|
|=1,|
|=
.
(1)若
∥
,求
;
(2)若
,
的夹角为135°,求|
|;
(3)若
﹣
与
垂直,求
与
的夹角.
科目:高中数学 来源: 题型:
【题目】宋元时期杰出的数学家朱世杰在其数学巨著《四元玉鉴》卷中“茭草形段”第一个问题“今有茭草六百八十束,欲令‘落一形’埵(同垛)之.问底子(每层三角形边茭草束数,等价于层数)几何?”中探讨了“垛枳术”中的落一形垛(“落一形”即是指顶上1束,下一层3束,再下一层6束,…,成三角锥的堆垛,故也称三角垛,如图,表示第二层开始的每层茭草束数),则本问题中三角垛底层茭草总束数为 .
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了得到函数y=3sin(2x+
)的图象,只要把函数y=3sinx的图象上所有的点( )
A.横坐标缩短到原来的
倍(纵坐标不变),再把所得图象所有的点向左平移
个单位长度
B.横坐标伸长到原来的2倍(纵坐标不变),再把所得图象所有的点向左平移
个单位长度
C.向右平移
个单位长度,再把所得图象所有的点横坐标缩短到原来的
倍(纵坐标不变)
D.向左平移
个单位长度,再把所得图象所有的点横坐标伸长到原来的2倍(纵坐标不变)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定点
,定直线
:
,动圆
过点
,且与直线
相切.
(Ⅰ)求动圆
的圆心轨迹
的方程;
(Ⅱ)过点
的直线与曲线
相交于
,
两点,分别过点
,
作曲线
的切线
,
,两条切线相交于点
,求
外接圆面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右焦点为
,离心率为
,设直线
的斜率是
,且
与椭圆
交于
,
两点.
(Ⅰ)求椭圆的标准方程.
(Ⅱ)若直线
在
轴上的截距是
,求实数
的取值范围.
(Ⅲ)以
为底作等腰三角形,顶点为
,求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,a,b,c分别是△ABC三个内角A,B,C的对边,下列四个命题:
①若tanA+tanB+tanC>0,则△ABC是锐角三角形
②若acoA=bcosB,则△ABC是等腰三角形
③若bcosC+ccosB=b,则△ABC是等腰三角形
④若
=
,则△ABC是等边三角形
其中正确命题的序号是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com