【题目】设
.
(1)用a表示f(x)的最大值M(a);
(2)当M(a)=2时,求a的值.
【答案】
(1)解:f(x)=
cos2x+asinx﹣
=﹣sin2x+asinx+
,
∵0≤x≤ ![]()
∴0≤sinx≤1
令sinx=t,则g(t)=﹣t2+at+
,t∈[0,1]
∴M(a)= ![]()
(2)解:当M(a)=2时,
或a=﹣2(舍);
.
∴
或a=﹣6
【解析】(1)用二倍角公式对f(x)化简得f(x)=﹣sin2x+asinx+
,设sinx=t,则函数g(t)是开口向下,对称轴为t=
的抛物线,根据二次函数的性质,对a进行讨论得出答案.(2)M(a)=2代入(1)中的M(a)的表达式即可得出结果.
【考点精析】解答此题的关键在于理解三角函数的最值的相关知识,掌握函数
,当
时,取得最小值为
;当
时,取得最大值为
,则
,
,
.
科目:高中数学 来源: 题型:
【题目】如图,在直四棱柱ABCD﹣A1B1C1D1中,底面四边形ABCD是直角梯形,其中AB⊥AD,AB=BC=1且AD=
AA1=2. ![]()
(1)求证:直线C1D⊥平面ACD1;
(2)试求三棱锥A1﹣ACD1的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数),在以原点为极点,
轴正半轴为极轴的极坐标系中,直线
的极坐标方程为
.
(1)求曲线
的普通方程和直线
的倾斜角;
(2)设点
,直线
和曲线
交于
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某科技公司生产一种手机加密芯片,其质量按测试指标划分为:指标大于或等于
为合格品,小于
为次品.现随机抽取这种芯片共
件进行检测,检测结果统计如表:
测试指标 |
|
|
|
|
|
芯片数量(件) |
|
|
|
|
|
已知生产一件芯片,若是合格品可盈利
元,若是次品则亏损
元.
(Ⅰ)试估计生产一件芯片为合格品的概率;并求生产
件芯片所获得的利润不少于
元的概率.
(Ⅱ)记
为生产
件芯片所得的总利润,求随机变量
的分布列和数学期望
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥
中,
平面
是
的中点,
是
上的点且
为
边
上的高.
![]()
(1)证明:
平面
;
(2)若
,求三棱锥
的体积;
(3)在线段
上是否存在这样一点
,使得
平面
?若存在,说出
点的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某货轮匀速行驶在相距
海里的甲、乙两地间运输货物,运输成本由燃料费用和其他费用组成.已知该货轮每小时的燃料费用与其航行速度的平方成正比(比例系数为
),其他费用为每小时
元,且该货轮的最大航行速度为
海里/小时.
(1)请将从甲地到乙地的运输成本
(元)表示为航行速度
(海里/小时)的函数;
(2)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com