【题目】田忌赛马是
史记
中记载的一个故事,说的是齐国将军田忌经常与齐国众公子赛马,孙膑发也们的马脚力都差不多,都分为上、中、下三等
于是孙膑给田忌将军制定了一个必胜策略:比赛即将开始时,他让田忌用下等马对战公子们的上等马,用上等马对战公子们的中等马,用中等马对战公子们的下等马,从而使田忌赢得公子们许多赌注
假设田忌的各等级马与某公子的各等级马进行一场比赛获胜的概率如表所示:
田忌的马 | 上等马 | 中等马 | 下等马 |
上等马 |
|
| 1 |
中等马 |
|
|
|
下等马 | 0 |
|
|
比赛规则规定:一次比由三场赛马组成,每场由公子和田忌各出一匹马出骞,结果只有胜和负两种,并且毎一方三场赛马的马的等级各不相同,三场比赛中至少获胜两场的一方为最终胜利者.
如果按孙膑的策略比赛一次,求田忌获胜的概率;
如果比赛约定,只能同等级马对战,每次比赛赌注1000金,即胜利者赢得对方1000金,每月比赛一次,求田忌一年赛马获利的数学期望.
【答案】(1)0.72;(2)见解析
【解析】
由题意知,田忌第三场比赛必输,则前两场比赛都胜,因而利用相互独立事件的概率乘法公式可得出答案;
先计算出田忌比赛一次获胜的概率,并计算出田忌比赛一次获利的数学期望,这个期望乘以12即可得出田忌一年赛马获利的数学期望。
(1)记事件A:按孙膑的策略比赛一次,田忌获胜,
对于事件A,三场比赛中,由于第三场必输,则前两次比赛中田忌都胜,
因此,
;
设田忌在每次比赛所得奖金为随机变量
,则随机变量
的可能取值为
和1000,
若比赛一次,田忌获胜,则三场比赛中,田忌输赢的分布为:胜胜胜、负胜胜、胜负胜、胜胜负,
设比赛一次,田忌获胜的概率为
,则
.
随机变量
的分布列如下表所示:
|
| 1000 |
|
|
|
所以,
.
因此,田忌一年赛马获利的数学期望为
金。
科目:高中数学 来源: 题型:
【题目】图是一个
的方格(其中心的方格线已被划去).一只青蛙停在
格处,从某一时刻起,青蛙每隔一秒钟就跳到与它所在方格有公共边的另一方格内,直至跳到
格才停下..若青蛙经过每一个方格不超过一次,则青蛙的跳法总数为________.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的准线与双曲线
相交于
、
两点,双曲线的一条渐近线方程是
,点
是抛物线的焦点,且
是等边三角形,则该双曲线的标准方程是( )
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的方程为
,离心率
,且短轴长为4.
求椭圆
的方程;
已知
,
,若直线l与圆
相切,且交椭圆E于C、D两点,记
的面积为
,记
的面积为
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图
,在边长为
的菱形
中,
,现沿对角线
把
翻折到
的位置得到四面体
,如图
所示.已知
.
![]()
(1)求证:平面
平面
;
(2)若
是线段
上的点,且
,求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了美化环境,某公园欲将一块空地规划建成休闲草坪,休闲草坪的形状为如图所示的四边形ABCD.其中AB=3百米,AD=
百米,且△BCD是以D为直角顶点的等腰直角三角形.拟修建两条小路AC,BD(路的宽度忽略不计),设∠BAD=
,
(
,
).
![]()
(1)当cos
=
时,求小路AC的长度;
(2)当草坪ABCD的面积最大时,求此时小路BD的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com