在四棱锥
中,
//
,
,
,
平面
,
. ![]()
(1)求证:
平面
;
(2)求异面直线
与
所成角的余弦值;
(3)设点
为线段
上一点,且直线
与平面
所成角的正弦值为
,求
的值.
科目:高中数学 来源: 题型:解答题
在如图所示的多面体中,底面BCFE是梯形,EF//BC,又EF
平面AEB,AE
EB,AD//EF,BC=2AD=4,EF=3,AE=BE=2,G为BC的中点.
(1)求证:AB//平面DEG;
(2)求证:BD
EG;
(3)求二面角C—DF—E的正弦值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,
是直角梯形,∠
=90°,
∥
,
=1,
=2,又
=1,∠
=120°,
⊥
,直线
与直线
所成的角为60°.
(1)求二面角
的的余弦值;
(2)求点
到面
的距离.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图1,在△ABC中,BC=3,AC=6,∠C=90°,且DE∥BC,将△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如图2。![]()
(1)求证:BC⊥平面A1DC;
(2)若CD=2,求BE与平面A1BC所成角的正弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知平行四边形ABCD中,AB=6,AD=10,BD=8,E是线段AD的中点.沿直线BD将△BCD翻折成△BC
D,使得平面BC
D
平面ABD.![]()
(1)求证:C'D
平面ABD;
(2)求直线BD与平面BEC'所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
)如图所示,在三棱锥P-ABC中,AB=BC=
,平面PAC⊥平面ABC,PD⊥AC于点D,AD=1,CD=3,PD=
.
(1)证明:△PBC为直角三角形;
(2)求直线AP与平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,四棱锥PABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=
,F为PC的中点,AF⊥PB.![]()
(1)求PA的长;
(2)求二面角B-AF-D的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com