在如图所示的多面体中,底面BCFE是梯形,EF//BC,又EF
平面AEB,AE
EB,AD//EF,BC=2AD=4,EF=3,AE=BE=2,G为BC的中点.
(1)求证:AB//平面DEG;
(2)求证:BD
EG;
(3)求二面角C—DF—E的正弦值.![]()
科目:高中数学 来源: 题型:解答题
如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.![]()
(1)求异面直线A1B与C1D所成角的余弦值;
(2)求平面ADC1与平面ABA1夹角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,直三棱柱
的底面
是等腰直角三角形,
,侧棱
底面
,且
,
是
的中点,
是
上的点.
(1)求异面直线
与
所成角
的大小(结果用反三角函数表示);
(2)若
,求线段
的长.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在梯形ABCD中,AB//CD,AD=DC=CB=a,
,平面
平面ABCD,四边形ACFE是矩形,AE=a.
(1)求证:
平面ACFE;
(2)求二面角B—EF—D的平面角的余弦值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知正方体
的棱长为2,E、F分别是
、
的中点,过
、E、F作平面
交
于G.
(l)求证:EG∥
;
(2)求二面角
的余弦值;
(3)求正方体被平面
所截得的几何体
的体积.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在四棱锥
中,
//
,
,
,
平面
,
. ![]()
(1)求证:
平面
;
(2)求异面直线
与
所成角的余弦值;
(3)设点
为线段
上一点,且直线
与平面
所成角的正弦值为
,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com