(±¾Ð¡ÌâÂú·Ö14·Ö)
´ÓijѧУ¸ßÒ»Äê¼¶
ÃûѧÉúÖÐËæ»ú³éÈ¡
Ãû²âÁ¿Éí¸ß£¬¾Ý²âÁ¿±»³éÈ¡µÄѧÉúµÄÉí¸ßÈ«²¿½éÓÚ
ºÍ
Ö®¼ä£¬½«²âÁ¿½á¹û°´ÈçÏ·½Ê½·Ö³É°Ë×飺µÚÒ»×é
£®µÚ¶þ×é
£»¡µÚ°Ë×é
£¬ÓÒͼ
Êǰ´ÉÏÊö·Ö×é·½·¨µÃµ½µÄÌõÐÎͼ£®
(1)¸ù¾ÝÒÑÖªÌõ¼þÌîдÏÂÃæ±í¸ñ£º
| ×é¡¡±ð | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Ñù±¾Êý | | | | | | | |
½â£º£¨1£©ÓÉÌõÐÎͼµÃµÚÆß×鯵ÂÊΪ
¿ÆÄ¿£º¸ßÖÐÊýѧ
À´Ô´£º
ÌâÐÍ£º
¿ÆÄ¿£º¸ßÖÐÊýѧ
À´Ô´£º
ÌâÐÍ£º
£¨±¾Ð¡ÌâÂú·Ö14·Ö£©ÉèÍÖÔ²C1µÄ·½³ÌΪ
¿ÆÄ¿£º¸ßÖÐÊýѧ
À´Ô´£º2011Äê½Î÷Ê¡¸§ÖÝÊнÌÑÐÊҸ߶þÉÏѧÆÚÆÚÄ©ÊýѧÀí¾í£¨A£©
ÌâÐÍ£º½â´ðÌâ
£¨±¾Ð¡ÌâÂú·Ö14·Ö£©
¿ÆÄ¿£º¸ßÖÐÊýѧ
À´Ô´£º2015½ìɽ¶«Ê¡Íþº£ÊиßÒ»ÉÏѧÆÚÆÚÄ©¿¼ÊÔÊýѧÊÔ¾í£¨½âÎö°æ£©
ÌâÐÍ£º½â´ðÌâ
(±¾Ð¡ÌâÂú·Ö14·Ö) Ä³Íøµê¶ÔÒ»Ó¦¼¾ÉÌÆ·¹ýÈ¥20ÌìµÄÏúÊÛ¼Û¸ñ¼°ÏúÊÛÁ¿½øÐÐÁ˼à²âͳ¼Æ·¢ÏÖ£¬µÚ £¨¢ñ£©Ð´³öÏúÊÛ¶î £¨¢ò£©Çó¸ÃÉÌÆ·µÚ7ÌìµÄÀûÈó£» £¨¢ó£©¸ÃÉÌÆ·µÚ¼¸ÌìµÄÀûÈó×î´ó£¿²¢Çó³ö×î´óÀûÈó.
¿ÆÄ¿£º¸ßÖÐÊýѧ
À´Ô´£º2011-2012ѧÄê¹ã¶«Ê¡¸ßÈýÏÂѧÆÚµÚÒ»´ÎÔ¿¼ÎÄ¿ÆÊýѧÊÔ¾í£¨½âÎö°æ£©
ÌâÐÍ£º½â´ðÌâ
£¨±¾Ð¡ÌâÂú·Ö14·Ö£©ÒÑÖª ¢Å Çó ¢Æ Èô ¢Ç Ö¤Ã÷£º
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁÐ±í ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
£®
¡àµÚÆß×éµÄÈËÊýΪ3ÈË£® ¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ 1·Ö×é±ð 1 2 3 4 5 6 7 8 Ñù±¾ÖÐÈËÊý 2 4 10 10 15 4 3 2
¡¡¡¡¡¡¡¡¡¡¡¡¡ 4·Ö
£¨2£©½â£ºÓÉÌõÐÎͼµÃǰÎå×鯵ÂÊΪ(0.008+0.016+0.04+0.04+0.06)¡Á
5=0.82£¬ºóÈý×鯵ÂÊΪ1-0.82=0.18£®
¹À¼ÆÕâËùѧУ¸ßÈýÄê¼¶Éí¸ßÔÚ180cmÒÔÉÏ(º¬180cm)µÄÈËÊý800¡Á0.18=144(ÈË)£® ¡¡ 8·Ö
£¨3£©µÚ¶þ×éËÄ
È˼ÇΪ
¡¢
¡¢
¡¢
£¬ÆäÖÐaΪÄÐÉú£¬b¡¢c¡¢dΪŮÉú£¬µÚÆß×éÈýÈ˼ÇΪ1¡¢2¡¢3£¬
ÆäÖÐ1¡¢2ΪÄÐÉú£¬3ΪŮÉú£¬»ù±¾Ê¼þÁбíÈçÏ£º ¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ 9·Ö[À´Ô´:Z_xx_k.Com] a B c d 1 1a 1b 1c 1d 2 ½âÎö
![]()
![]()
¿Î¿ÎÁ·Óëµ¥Ôª²âÊÔϵÁдð°¸
ÊÀ¼Í½ð°ñС²©Ê¿µ¥ÔªÆÚĩһ¾íͨϵÁдð°¸
µ¥Ôª²âÊÔAB¾į́º£³ö°æÉçϵÁдð°¸
»Æ¸ÔÐÂ˼άÅàÓÅ¿¼Íõµ¥Ôª¼ÓÆÚÄ©¾íϵÁдð°¸
ÃûУÃûʦ¶á¹Ú½ð¾íϵÁдð°¸
СѧӢÓï¿ÎʱÁ·ÏµÁдð°¸
ÅàÓÅаïÊÖϵÁдð°¸
ÌìÌìÏòÉÏÒ»±¾ºÃ¾íϵÁдð°¸
СѧÉú10·ÖÖÓÓ¦ÓÃÌâϵÁдð°¸
¿ÎÌÃ×÷Òµ¹ãÎ÷½ÌÓý³ö°æÉçϵÁдð°¸
Äê¼¶
¸ßÖпγÌ
Äê¼¶
³õÖпγÌ
¸ßÒ»
¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡
³õÒ»
³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡
¸ß¶þ
¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡
³õ¶þ
³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡
¸ßÈý
¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡
³õÈý
³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡
sin2x+2sin(3
+x)cos(¦Ð 4
+x)£®¦Ð 4
£¨I£©»¯¼òf£¨x£©µÄ±í´ïʽ£¬²¢Çóf£¨x£©µÄ×îСÕýÖÜÆÚ£»
£¨II£©µ±x¡Ê[0£¬
] ʱ£¬Çóº¯Êýf(x)µÄÖµÓò£®¦Ð 2
(a£¾b£¾0)£¬ÇúÏßC2µÄ·½³ÌΪy=
£¬ÇÒÇúÏßC1ÓëC2ÔÚµÚÒ»ÏóÏÞÄÚÖ»ÓÐÒ»¸ö¹«¹²µãP¡££¨1£©ÊÔÓÃa±íʾµãPµÄ×ø±ê£»£¨2£©ÉèA¡¢BÊÇÍÖÔ²C1µÄÁ½¸ö½¹µã£¬µ±a±ä»¯Ê±£¬Çó¡÷ABPµÄÃæ»ýº¯ÊýS(a)µÄÖµÓò£»£¨3£©¼Çmin{y1,y2,¡¡,yn}Ϊy1,y2,¡¡,ynÖÐ×îСµÄÒ»¸ö¡£Éèg(a)ÊÇÒÔÍÖÔ²C1µÄ°ë½¹¾àΪ±ß³¤µÄÕý·½ÐεÄÃæ»ý£¬ÊÔÇóº¯Êýf(a)=min{g(a), S(a)}µÄ±í´ïʽ¡£
ÒÑÖª
=2£¬µã£¨
£©ÔÚº¯Êý
µÄͼÏñÉÏ£¬ÆäÖÐ
=
.
(1)Ö¤Ã÷£ºÊýÁÐ
}ÊǵȱÈÊýÁУ»
£¨2£©Éè
£¬Çó
¼°ÊýÁÐ{
}µÄͨÏʽ£»
£¨3£©¼Ç
£¬ÇóÊýÁÐ{
}µÄǰnÏîºÍ
£¬²¢Ö¤Ã÷
.
Ìì(
)µÄÏúÊÛ¼Û¸ñ(µ¥Î»£ºÔª)Ϊ
£¬µÚ
ÌìµÄÏúÊÛÁ¿Îª
£¬ÒÑÖª¸ÃÉÌÆ·³É±¾ÎªÃ¿¼þ25Ôª.
¹ØÓÚµÚ
ÌìµÄº¯Êý¹ØÏµÊ½£»
µÄͼÏñÔÚµã
´¦µÄÇÐÏßÓëÖ±Ïß
ƽÐÐ.
£¬
Âú×ãµÄ¹ØÏµÊ½£»
ÉϺã³ÉÁ¢£¬Çó
µÄȡֵ·¶Î§£»
£¨
£©
°æÈ¨ÉùÃ÷£º±¾Õ¾ËùÓÐÎÄÕ£¬Í¼Æ¬À´Ô´ÓÚÍøÂç£¬Öø×÷Ȩ¼°°æÈ¨¹éÔ×÷ÕßËùÓУ¬×ªÔØÎÞÒâÇÖ·¸°æÈ¨£¬ÈçÓÐÇÖȨ£¬Çë×÷ÕßËÙÀ´º¯¸æÖª£¬ÎÒÃǽ«¾¡¿ì´¦Àí£¬ÁªÏµqq£º3310059649¡£
ICP±¸°¸ÐòºÅ: »¦ICP±¸07509807ºÅ-10 ¶õ¹«Íø°²±¸42018502000812ºÅ