精英家教网 > 高中数学 > 题目详情

如图,在三棱锥中,底面, 的中点,.

(1)求证:平面
(2)求点到平面的距离。

(1)证明过程详见解析;(2)点到平面的距离为.

解析试题分析:本题以三棱锥为几何背景考查线面垂直的判断和点到面的距离的求法,可以运用传统几何法求解,突出考查空间想象能力和计算能力.第一问,先利用线面垂直平面,得到线线垂直,由等腰三角形,得,由上述两个条件得平面;第二问,利用第一问可得面,利用面面垂直的性质,得的距离即为到面的距离,在直角三角形中,用等面积法表示.法二:第二问,等体积法求点面距离,,即,得.
试题解析:(1)因为平面平面
所以        2分
又因为在中,的中点,
所以     4分
平面平面,且
所以平面   6分
(2)法一:因为平面平面
所以平面平面,             8分
又因为平面平面
所以点的距离即为点到平面的距离,        10分
在直角三角形中,由                 11分
得                     13分
所以点到平面的距离为 .          14分
法二:设点到平面的距离为, 据      8分
,得         13分
所以点到平面的距离为 .          14分
考点:1.线面垂直的判定定理;2.面面垂直的性质;3.等体

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,底面△为等腰直角三角形,为棱上一点,且平面⊥平面.

(Ⅰ)求证:为棱的中点;(Ⅱ)为何值时,二面角的平面角为.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,平面,四边形为正方形,且分别是线段的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面
(Ⅲ)求三棱锥与四棱锥的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,边长为2的正方形ABCD,E,F分别是AB,BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于.

(1)求证:⊥EF;
(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在斜三棱柱中,侧面⊥底面,侧棱与底面的角,.底面是边长为2的正三角形,其重心为点,是线段上一点,且

(Ⅰ)求证://侧面
(Ⅱ)求平面与底面所成锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,长方体中,,点E是AB的中点.

(1)证明:平面;
(2)证明:;
(3)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,平面平面是等边三角形,已知.

(1)设上的一点,证明:平面平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,,E是PC的中点.

(Ⅰ)证明 平面EDB;
(Ⅱ)求EB与底面ABCD所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB.

(Ⅰ)证明:BC1∥平面A1CD;
(Ⅱ)求二面角D-A1C-E的正弦值.

查看答案和解析>>

同步练习册答案