【题目】函数
的所有零点的积为m,则有( )
A.
B.
C.
D. ![]()
科目:高中数学 来源: 题型:
【题目】棱台
的三视图与直观图如图所示.
![]()
(1)求证:平面
平面
;
(2)在线段
上是否存在一点
,使
与平面
所成的角的正弦值为
?若存在,指出点
的位置;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有4个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(1)求这4个人中恰有2人去参加甲游戏的概率;
(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;
(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X﹣Y|,求随机变量ξ的分布列与数学期望Eξ.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱
中,
底面
,
,点
是
的中点.
![]()
(Ⅰ)求证:
;
(Ⅱ)求证:
∥平面
.
(Ⅲ)设
,
,在线段
上是否存在点
,使得
?若存在,确定点
的位置; 若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=
,其中a>﹣1.若f(x)在R上是增函数,则实数a的取值范围是( )
A.[e+1,+∞)
B.(e+1,+∞)
C.(e﹣1,+∞)
D.[e﹣1,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在单位正方体
中,点P在线段
上运动,给出以下四个命题:
![]()
异面直线
与
间的距离为定值;
三棱锥
的体积为定值;
异面直线
与直线
所成的角为定值;
二面角
的大小为定值.
其中真命题有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于函数
,下列命题中所有正确结论的序号是______.
①其图象关于
轴对称; ②当
时,
是增函数;当
时,
是减函数;
③
的最小值是
; ④
在区间
上是增函数;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AB//CD,且![]()
![]()
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,
,且四棱锥P-ABCD的体积为
,求该四棱锥的侧面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com