【题目】设函数f(x)=
,其中a>﹣1.若f(x)在R上是增函数,则实数a的取值范围是( )
A.[e+1,+∞)
B.(e+1,+∞)
C.(e﹣1,+∞)
D.[e﹣1,+∞)
科目:高中数学 来源: 题型:
【题目】某粮库拟建一个储粮仓如图所示,其下部是高为2的圆柱,上部是母线长为2的圆锥,现要设计其底面半径和上部圆锥的高,若设圆锥的高
为
,储粮仓的体积为
.
![]()
(1)求
关于
的函数关系式;(圆周率用
表示)
(2)求
为何值时,储粮仓的体积最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}的前n项和是Sn , 且Sn+
=1.
(1)求数列{an}的通项公式;
(2)记bn=log3
,数列
的前n项和为Tn , 若不等式Tn<m,对任意的正整数n恒成立,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知:直线
,一个圆与
轴正半轴与
轴正半轴都相切,且圆心
到直线
的距离为
.
(
)求圆的方程.
(
)
是直线
上的动点,
,
是圆的两条切线,
,
分别为切点,求四边形
的面积的最小值.
(
)圆与
轴交点记作
,过
作一直线
与圆交于
,
两点,
中点为
,求
最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4﹣5:不等式选讲
已知函数f(x)=|x+1|﹣|x|+a.
(1)若a=0,求不等式f(x)≥0的解集;
(2)若方程f(x)=x有三个不同的解,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在一个坡度一定的山坡AC的顶上有一高度为25m的建筑物CD,为了测量该山坡相对于水平地面的坡角θ,在山坡的A处测得∠DAC=15°,沿山坡前进50m到达B处,又测得∠DBC=45°,根据以上数据可得cosθ= . ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a∈R,f(x)=log2(1+ax).
(1)求f(x2)的值域;
(2)若关于x的方程f(x)-log2[(a-4)x2+(2a-5)x]=0的解集恰有一个元素,求实数a的取值范围;
(3)当a>0时,对任意的t∈(
,+∞),f(x2)在[t,t+1]的最大值与最小值的差不超过4,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4﹣1:几何证明选讲
如图,已知四边形ABCD内接于⊙O,且AB是的⊙O直径,过点D的⊙O的切线与BA的延长线交于点M.![]()
(1)若MD=6,MB=12,求AB的长;
(2)若AM=AD,求∠DCB的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com