【题目】已知定义域为
的函数
满足:对任何
,都有
,且当
时,
.在下列结论:
(1)对任何
,都有
;(2)任意
,都有
;
(3)函数
的值域是
;
(4)“函数
在区间
上单调递减”的充要条件是“存在
,使得
”.
其中正确命题是( )
A.(1)(2)B.(1)(2)(3)C.(1)(3)(4)D.(2)(3)(4)
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱
中,
,
,
,
是
的中点,E是棱
上一动点.
![]()
(1)若E是棱
的中点,证明:
平面
;
(2)求二面角
的余弦值;
(3)是否存在点E,使得
,若存在,求出E的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率
,点
,点
、
分别为椭圆的上顶点和左焦点,且
.
(1)求椭圆
的方程;
(2)若过定点
的直线
与椭圆
交于
,
两点(
在
,
之间)设直线
的斜率
,在
轴上是否存在点
,使得以
,
为邻边的平行四边形为菱形?如果存在,求出
的取值范围?如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列
的前
项和为
,若存在正整数
,且
,使得
,
同时成立,则称数列
为“
数列”.
(1)若首项为
,公差为
的等差数列
是“
数列”,求
的值;
(2)已知数列
为等比数列,公比为
.
①若数列
为“
数列”,
,求
的值;
②若数列
为“
数列”,
,求证:
为奇数,
为偶数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系
,极坐标系中
,弧
所在圆的圆心分别为
,曲线
是弧
,曲线
是弧
,曲线
是弧
,曲线
是弧
.
![]()
(1)分别写出
的极坐标方程;
(2)直线
的参数方程为
(
为参数),点
的直角坐标为
,若直线
与曲线
有两个不同交点
,求实数
的取值范围,并求出
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,直线
的参数方程为
(
为参数),直线
的参数方程为
(
为参数),设
与
的交点为
,当
变化时,
的轨迹为曲线
.
(1)写出
的普遍方程及参数方程;
(2)以坐标原点为极点,
轴正半轴为极轴建立极坐标系,设曲线
的极坐标方程为
,
为曲线
上的动点,求点
到
的距离的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com