【题目】设△ABC是边长为4的正三角形,点P1 , P2 , P3 , 四等分线段BC(如图所示) ![]()
(1)P为边BC上一动点,求
的取值范围?
(2)Q为线段AP1上一点,若
=m
+
,求实数m的值.
【答案】
(1)解:以BC所在直线为x轴,AP2所在直线为y轴,
P2为坐标原点,建立直角坐标系,
则A(0,2
),B(﹣2,0),C(2,0),P1(﹣1,0),
设P(t,0)(﹣2≤t≤2),则
=(﹣t,2
),
=(2﹣t,0),
可得
=﹣t(2﹣t)+2
0=t2﹣2t=(t﹣1)2﹣1,(﹣2≤t≤2),
t=1时,取得最小值﹣1;t=﹣2时,取得最大值8.
则
的取值范围为[﹣1,8]
(2)解:设Q(x,y),由A,Q,P1共线,
可得
=
,
即有y=2
x+2
,
则
=(x,2
x),
=(﹣2,﹣2
),
=(2,﹣2
),
若
=m
+
,
则
,
解得m=
.
![]()
【解析】(1)以BC所在直线为x轴,AP2所在直线为y轴,P2为坐标原点,建立直角坐标系,求得A,B,C,P1 , 的坐标,求得向量PA,PC的坐标,运用数量积的坐标表示,再由二次函数在闭区间上的值域求法可得;(2)设Q(x,y),由A,Q,P1共线,运用斜率相等,求得y关于x的式子,再分别求得向量AQ,AB,AC的坐标,得到m,x的方程组,即可解得m的值.
科目:高中数学 来源: 题型:
【题目】已知x=3是函数f(x)=aln(1+x)+x2﹣10x的一个极值点.
(Ⅰ)求a;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分12分) 已知椭圆
的左焦点
及点
,原点
到直线
的距离为
.
(1)求椭圆
的离心率
;
(2)若点
关于直线
的对称点
在圆
上,求椭圆
的方程及点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆方程
(
)的离心率为
, 短轴长为2.
(1) 求椭圆的标准方程;
(2) 直线
(
)与
轴的交点为
(点
不在椭圆外), 且与椭圆交于两个不同的点
. 若线段
的中垂线恰好经过椭圆的下端点
, 且与线段
交于点
, 求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三国时期吴国的数学家赵爽曾创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个全等的直角三角形与中间的小正方形拼成一个大正方形,其中一个直角三角形中较小的锐角
满足
,现向大正方形内随机投掷一枚飞镖,则飞镖落在小正方形内的概率是
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设a∈R,函数f(x)=x|x﹣a|﹣a.
(1)若f(x)为奇函数,求a的值;
(2)若对任意的x∈[2,3],f(x)≥0恒成立,求a的取值范围;
(3)当a>4时,求函数y=f(f(x)+a)零点的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂生产
、
两种元件,其质量按测试指标划分为:大于或等于
为正品,小于
为次品.现从一批产品中随机抽取这两种元件各
件进行检测,检测结果记录如下:
|
|
|
|
|
|
B |
|
|
|
|
|
由于表格被污损,数据
、
看不清,统计员只记得
,且、
两种元件的检测数据的平均值相等,方差也相等.
(1)求表格中
与
的值;
(2)从被检测的
件
种元件中任取
件,求
件都为正品的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年两会继续关注了乡村教师的问题,随着城乡发展失衡,乡村教师待遇得不到保障,流失现象严重,教师短缺会严重影响乡村孩子的教育问题,为此,某市今年要为某所乡村中学招聘储备未来三年的教师,现在每招聘一名教师需要2万元,若三年后教师严重短缺时再招聘,由于各种因素,则每招聘一名教师需要5万元,已知现在该乡村中学无多余教师,为决策应招聘多少乡村教师搜集并整理了该市100所乡村中学在过去三年内的教师流失数,得到如下的柱状图:记x表示一所乡村中学在过去三年内流失的教师数,y表示一所乡村中学未来四年内在招聘教师上所需的费用(单位:万元),n表示今年为该乡村中学招聘的教师数,为保障乡村孩子教育不受影响,若未来三年内教师有短缺,则第四年马上招聘.
![]()
(1)若n=19,求y与x的函数解析式;
(2)若要求“流失的教师数不大于n”的频率不小于0.5,求n的最小值;
(3)假设今年该市为这100所乡村中学的每一所都招聘了19个教师或20个教师,分别计算该市未来四年内为这100所乡村中学招聘教师所需费用的平均数,以此作为决策依据,今年该乡村中学应招聘19名还是20名教师?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量
=(2cosx,t)(t∈R),
=(sinx﹣cosx,1),函数y=f(x)=
,将y=f(x)的图象向左平移
个单位长度后得到y=g(x)的图象且y=g(x)在区间[0,
]内的最大值为
.
(1)求t的值及y=f(x)的最小正周期;
(2)设△ABC的内角A,B,C的对边分别为a,b,c,若
g(
﹣
)=﹣1,a=2,求BC边上的高的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com