【题目】直线
与曲线
有且仅有一个公共点,则
的取值范围是
A.
B.
或
C.
D. ![]()
【答案】B
【解析】
把曲线方程整理后可知其图象为半圆,进而画出图象来,要使直线与曲线有且仅有一个交点,
那么很容易从图上看出其三个极端情况分别是:直线在第四象限与曲线相切,交曲线于(0,
﹣1)和另一个点,及与曲线交于点(0,1),分别求出b,则b的范围可得.
曲线
有即 x2+y2=1 (x≥0),表示一个半圆(单位圆位于x轴及x轴右侧的部分).
如图,A(0,1)、B(1,0)、C(0,﹣1),
当直线y=x+b经过点A时,1=0+b,求得 b=1;
当直线y=x+b经过点B、点C时,0=1+b,求得b=﹣1;
当直线y=x+b和半圆相切时,由圆心到直线的距离等于半径,可得1=
,求得b=﹣
,
或 b=
(舍去),
故要求的实数b的范围为﹣1<b≤1或b=﹣
,
故答案为:B
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)当
时,解不等式
;
(2)若关于
的方程
在区间
上恰有一个实数解,求
的取值范围;
(3)设
,若存在
使得函数
在区间
上的最大值和最小值的差不超过1,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥
中,底面ABCD为矩形,点E在线段PA上,
平面BDE.
求证:
;
若
是等边三角形,
,平面
平面ABCD,四棱锥
的体积为
,求点E到平面PCD的距离.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知一个口袋有
个白球,
个黑球,这些球除颜色外全部相同,现将口袋中的球随机逐个取出,并依次放入编号为
,
,
,
的抽屉内.
(1)求编号为
的抽屉内放黑球的概率;
(2)口袋中的球放入抽屉后,随机取出两个抽屉中的球,求取出的两个球是一黑一白的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数
,若存在实数对
,使得等式
对定义域中的任意
都成立,则称函数
是“
型函数”.
(1)若函数
是“
型函数”,且
,求出满足条件的实数对
;
(2)已知函数
.函数
是“
型函数”,对应的实数对
为
,当
时,
.若对任意
时,都存在
,使得
,试求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某乐园按时段收费,收费标准为:每玩一次不超过
小时收费10元,超过
小时的部分每小时收费
元(不足
小时的部分按
小时计算).现有甲、乙二人参与但都不超过
小时,甲、乙二人在每个时段离场是等可能的。为吸引顾客,每个顾客可以参加一次抽奖活动。
(1) 用
表示甲乙玩都不超过
小时的付费情况,求甲、乙二人付费之和为44元的概率;
(2)抽奖活动的规则是:顾客通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数
,并按如右所示的程序框图执行.若电脑显示“中奖”,则该顾客中奖;若电脑显示“谢谢”,则不中奖,求顾客中奖的概率.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com