【题目】甲,乙二人进行乒乓球比赛,已知每一局比赛甲胜乙的概率是
,假设每局比赛结果相互独立.
(Ⅰ)比赛采用三局两胜制,即先获得两局胜利的一方为获胜方,这时比赛结束.求在一场比赛中甲获得比赛胜利的概率;
(Ⅱ)比赛采用三局两胜制,设随机变量
为甲在一场比赛中获胜的局数,求
的分布列和均值;
(Ⅲ)有以下两种比赛方案:方案一,比赛采用五局三胜制;方案二,比赛采用七局四胜制.问哪个方案对甲更有利.(只要求直接写出结果)
【答案】(Ⅰ)
(Ⅱ)分布列见解析,E(X)
(Ⅲ)方案二对甲更有利
【解析】
(Ⅰ)甲获得比赛胜利包含二种情况:①甲连胜二局;②前二局甲一胜一负,第三局甲胜.由此能求出甲获得比赛胜利的概率.
(Ⅱ)由已知得X的可能取值为0,1,2,分别求出相应的概率,由此能求出随机变量X的分布列和数学期望.
(Ⅲ)方案二对甲更有利.
(Ⅰ)甲获得比赛胜利包含二种情况:①甲连胜二局;②前二局甲一胜一负,第三局甲胜.
∴甲获得比赛胜利的概率为:
P=(
)2
(
)
.
(Ⅱ)由已知得X的可能取值为0,1,2,
P(X=0)=(
)2
,
P(X=1)
,
P(X=2)=(
)2
(
)
.
∴随机变量X的分布列为:
X | 0 | 1 | 2 |
P |
|
|
|
∴数学期望E(X)
.
(Ⅲ)方案一,比赛采用五局三胜制;方案二,比赛采用七局四胜制.
方案二对甲更有利.
科目:高中数学 来源: 题型:
【题目】已知动圆
经过定点
,且与直线
相切,设动圆圆心
的轨迹为曲线
.
(1)求曲线
的方程;
(2)设过点
的直线
,
分别与曲线
交于
,
两点,直线
,
的斜率存在,且倾斜角互补,证明:直线
的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个小商店从一家有限公司购进21袋白糖,每袋白糖的标准质量是500g,为了了解这些白糖的质量情况,称出各袋白糖的质量(单位:g)如下:
486 495 496 498 499 493 493 498 484 497 504 489 495 503
499 503 509 498 487 500 508
(1)21袋白糖的平均质量是多少?标准差s是多少?
(2)质量位于
与
之间有多少袋白糖?所占的百分比是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知:函数
,当x∈(-3,2)时,
>0,当x∈(-
,-3)
(2,+
)时,
<0
(I)求a,b的值;
(II)若不等式
的解集为R,求实数c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】耐盐碱水稻俗称“海水稻”,是一种可以长在滩涂和盐碱地的水稻。还水稻的灌溉是将海水稀释后进行灌溉。某实验基础为了研究海水浓度
(
)对亩产量
(吨)的影响,通过在试验田的种植实验,测得了某种还水稻的亩产量与海水浓度的数据如下表:
海水浓度 |
|
|
|
|
|
亩产量 |
|
|
|
|
|
绘制散点图发现,可用线性回归模型拟合亩产量
与海水浓度
之间的相关关系,用最小二乘法计算得
与
之间的线性回归方程为
.
(1)求出
的值,并估算当浇灌海水浓度为8%时该品种的亩产量。
(2)①完成下列残差表:
海水浓度 |
|
|
|
|
|
亩产量 |
|
|
|
|
|
| |||||
残差 |
②统计学中常用相关指数
来刻画回归效果,
越大,模型拟合效果越好,如假设
,就说明预报变量
的差异有
是由解释变量
引起的.请计算相关指数
(精确到0.01),并指出亩产量的变化多大程度上是由浇灌海水浓度引起的.
(附:残差公式
,相关指数
,参考数据
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com