精英家教网 > 高中数学 > 题目详情
6.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦点分别为F1、F2,渐近线方程是:y=±$\frac{{2\sqrt{5}}}{5}$x,点A(0,b),且△AF1F2的面积为6.
(Ⅰ)求双曲线C的标准方程;
(Ⅱ)直线l:y=kx+m(k≠0,m≠0)与双曲线C交于不同的两点P,Q,若|AP|=|AQ|,求实数m的取值范围.

分析 (Ⅰ)求得双曲线的渐近线方程,可得a,b的方程,由三角形的面积公式可得b,c的关系,结合a,b,c的关系,解方程可得a,b,即可得到所求双曲线的方程;
(Ⅱ)设P(x1,y1),Q(x2,y2),线段PQ的中点为D(x0,y0),联立直线方程和双曲线的方程,消去y,可得x的方程,运用判别式大于0,韦达定理,中点坐标公式和直线的斜率公式,结合两直线垂直的条件:斜率之积为-1,即可得到所求m的范围.

解答 解:(Ⅰ)双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的渐近线方程为y=±$\frac{b}{a}$x,
由题意可得$\frac{b}{a}=\frac{{2\sqrt{5}}}{5}$,①
${S_{△A{F_1}{F_2}}}=\frac{1}{2}•2c•b=6$,②
又a2+b2=c2,③
由①②③联立求得:a2=5,b2=4.
所以双曲线C的标准方程是:$\frac{x^2}{5}-\frac{y^2}{4}=1$.          
(Ⅱ)设P(x1,y1),Q(x2,y2),
线段PQ的中点为D(x0,y0),
y=kx+m与$\frac{x^2}{5}-\frac{y^2}{4}=1$联立消y,整理得(4-5k2)x2-10kmx-5m2-20=0,${x_1}+{x_2}=\frac{10km}{{4-5{k^2}}},{x_1}•{x_2}=-\frac{{5{m^2}+20}}{{4-5{k^2}}}$,
由4-5k2≠0及△>0,得$\left\{\begin{array}{l}4-5{k^2}≠0\\{m^2}-5{k^2}+4>0\end{array}\right.$,④
${x_0}=\frac{{{x_1}+{x_2}}}{2}=\frac{5km}{{4-5{k^2}}},{y_0}=k{x_0}+m=\frac{4m}{{4-5{k^2}}}$,
由|AP|=|AQ|知,AD⊥PQ,
于是${k_{AD}}=\frac{{{y_0}-2}}{x_0}=\frac{{\frac{4m}{{4-5{k^2}}}-2}}{{\frac{5km}{{4-5{k^2}}}}}=-\frac{1}{k}$,化简得10k2=8-9m,⑤
将⑤代入④解得$m<-\frac{9}{2}$或m>0,
又由⑤10k2=8-9m>0,得$m<\frac{8}{9}$,
综上,实数m的取值范围是$\{m|m<-\frac{9}{2}$,或$0<m<\frac{8}{9}$}.

点评 本题考查双曲线的标准方程的求法,注意运用渐近线方程和三角形的面积公式,考查直线方程和双曲线的方程联立,运用韦达定理和判别式大于0,以及中点坐标公式,直线的斜率公式,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设椭圆$\frac{x^2}{a^2}+\frac{y^2}{4}=1$(a>2)的离心率为$\frac{{\sqrt{3}}}{3}$.斜率为k的直线l过点E(0,1),且与椭圆相交于C,D两点.
(1)求椭圆方程.
(2)若直线l与x轴相交于点G,且$\overline{GC}=\overline{DE}$,求k的值.
(3)求△COD的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.有甲、乙、丙、丁、戊5位同学,求:
(1)5位同学站成一排,甲、戊不在两端有多少种不同的排法?
(2)5位同学站成一排,要求甲乙必须相邻,丙丁不能相邻,有多少种不同的排法?
(3)将5位同学分配到三个班,每班至少一人,共有多少种不同的分配方法?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若复数z=$\frac{1+i}{1-i}$,$\overline z$为z的共轭复数,则($\overline z$)5=(  )
A.iB.-iC.-25iD.25i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=x2-4ln(x+1)的单调递减区间是(  )
A.(-∞,-2)B.(-1,1)C.(-2,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知向量$\overrightarrow{a}$=(1,2),向量$\overrightarrow{b}$=(x,-1),若向量$\overrightarrow{a}$与向量$\overrightarrow{b}$夹角为钝角,则x的取值范围为(-∞,-$\frac{1}{2}$)∪(-$\frac{1}{2}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.△ABC中,D,E,F分别是AB,BC,AC的中点,则$\overrightarrow{DF}$=(  )
A.$\overrightarrow{EF}+\overrightarrow{ED}$B.$\overrightarrow{EF}-\overrightarrow{DE}$C.$\overrightarrow{EF}+\overrightarrow{AD}$D.$\overrightarrow{EF}+\overrightarrow{AF}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数$f(x)=\frac{x}{1+|x|}$的图象关于原点对称.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=-$\frac{1}{2}$cos2x-sinx-$\frac{1}{4}$,x∈R.
(1)求不等式f(x)≤0的解集;
(2)讨论函数f(x)在[0,2π]的单调性.

查看答案和解析>>

同步练习册答案