【题目】已知圆
,直线
,若直线
上存在点
,过点
引圆的两条切线
,使得
,则实数
的取值范围是( )
A.
B. [
,
]
C.
D.
)
科目:高中数学 来源: 题型:
【题目】某火锅店为了了解气温对营业额的影响,随机记录了该店1月份其中5天的日营业额y(单位:万元)与该地当日最低气温x(单位:℃)的数据,如下表:
![]()
(1)求y关于x的线性回归方程
=
x+
;
(2)判断y与x之间是正相关还是负相关,若该地1月份某天的最低气温为6 ℃,用所求回归方程预测该店当日的营业额;
(3)设该地1月份的日最低气温X~N(μ,σ2),其中μ近似为样本平均数
,σ2近似为样本方差s2,求P(3.8<X≤13.4).
附:①回归方程
中,
=
,
=
﹣
.
②
≈3.2,
≈1.8.若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.682 7,P(μ-2σ<X≤μ+2σ)=0.954 5.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在航天员进行的一项太空实验中,要先后实施6个程序,其中程序
只能出现在第一步或最后一步,程序
实施时必须相邻,请问实验顺序的编排方法共有 ( )
A.
种 B.
种 C.
种 D.
种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面ABCD为平行四边形,PA⊥底面ABCD,
,
,
,
.
![]()
(1)求证:平面PCA⊥平面PCD;
(2)设E为侧棱PC上的一点,若直线BE与底面ABCD所成的角为45°,求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点为
,过点
且斜率为
的直线
交曲线
于
两点,交圆
于
两点(
两点相邻).
(Ⅰ)若
,当
时,求
的取值范围;
(Ⅱ)过
两点分别作曲线
的切线
,两切线交于点
,求
与
面积之积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系
中,椭圆
经过点
,离心率为
. 已知过点
的直线
与椭圆
交于
两点.
![]()
(1)求椭圆
的方程;
(2)试问
轴上是否存在定点
,使得
为定值.若存在,求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
为边长为2的菱形,
,
,面
面
,点
为棱
的中点.
![]()
(1)在棱
上是否存在一点
,使得
面
,并说明理由;
(2)当二面角
的余弦值为
时,求直线
与平面
所成的角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
’(
为参数).以坐标原点为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)求
和
的直角坐标方程;
(2)已知直线
与
轴交于点
,且与曲线
交于
,
两点,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com