【题目】如图,过抛物线C:y2=2px(p>0)的准线l上的点M(﹣1,0)的直线l1交抛物线C于A,B两点,线段AB的中点为P.
![]()
(Ⅰ)求抛物线C的方程;
(Ⅱ)若|MA||MB|=λ|OP|2,求实数λ的取值范围.
【答案】(Ⅰ)y2=4x;(Ⅱ)λ∈(0,
).
【解析】
(Ⅰ)由题意得抛物线方程;
(Ⅱ)设直线
与联立抛物线,由设而不求的方法得点
横纵坐标的关系,计算
的值,得出参数
的取值范围.
(Ⅰ)抛物线的准线方程为:x=﹣1,所以抛物线C的方程为:y2=4x;
(Ⅱ)设直线l1的方程为:x=my﹣1,代入抛物线中得:
y2﹣4my+4=0,△=16m2﹣16>0,∴m2>1,
设A(x,y),B(x',y'),
∴y+y'=4m,yy'=4,
|MA||MB|
|y﹣yM|
|y'﹣yM|=(1+m2)|yy'|=4(1+m2),
AB的中点P的坐标(2m2﹣1,2m),|OP|2=(2m2﹣1)2+4m2=4m4+1,
|MA||MB|=λ|OP|2λ
,
令m2+1=t(t>2),
则λ
在(2,+∞)上是减函数,
故λ∈(0,
).
![]()
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
为参数),以
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,点
是曲线
上的动点,点
在
的延长线上,且
,点
的轨迹为
.
(1)求直线
及曲线
的极坐标方程;
(2)若射线
与直线
交于点
,与曲线
交于点
(与原点不重合),求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,点M,N分别为正方体ABCD﹣A1B1C1D1的棱AA1,BB1的中点,以正方体的六个面的中心为顶点构成一个八面体,若平面D1MNC1将该八面体分割成上、下两部分的体积分别为V1、V2,则
( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,已知曲线
的极坐标方程为:
,直线
的参数方程是
(
为参数,
).
(1)求曲线
的直角坐标方程;
(2)设直线
与曲线
交于两点
,且线段
的中点为
,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,五边形
中,四边形
为长方形,
为边长为
的正三角形,将
沿
折起,使得点
在平面
上的射影恰好在
上.
![]()
(Ⅰ)当
时,证明:平面
平面
;
(Ⅱ)若
,求平面
与平面
所成二面角的余弦值的绝对值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的顶点在原点,焦点
在
轴的正半轴,且过点
,过
的直线交抛物线于
,
两点.
(1)求抛物线的方程;
(2)设直线
是抛物线的准线,求证:以
为直径的圆与直线
相切.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正方体AC1中,E,F分别为D1C1,B1C1的中点,AC∩BD=P,A1C1∩EF=Q,如图.
![]()
(1)若A1C交平面EFBD于点R,证明:P,Q,R三点共线.
(2)线段AC上是否存在点M,使得平面B1D1M∥平面EFBD,若存在确定M的位置,若不存在说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com