【题目】如图①,四边形
中,
,
,
,
,
为
的中点.将
沿
折起到
的位置,如图②.
![]()
(Ⅰ)求证:平面
平面
;
(Ⅱ)若
,求
与平面
所成角的正弦值.
【答案】(Ⅰ)证明见解析;(Ⅱ)
.
【解析】
(Ⅰ)在图①中,
,
,根据翻折的性质得出在图②中,
,
,利用线面垂直的判定定理得出
平面
,再利用面面垂直的判定定理可证得平面
平面
;
(Ⅱ)以点
为坐标原点,
、
、
所在直线分别为
、
、
轴建立空间直角坐标系
,计算出平面
的一个法向量,利用空间向量法可求得
与平面
所成角的正弦值.
(Ⅰ)因为四边形
中,
,
,
,
,
为
的中点,
且
,则四边形
为矩形,所以
,即
,
.
在图②中,
,
,
又因为
,所以
平面
.
又因为
平面
,所以平面
平面
.
(Ⅱ)由
得
,
又
,
,以点
为坐标原点,
、
、
所在直线分别为
、
、
轴建立空间直角坐标系
,
![]()
由
,得
、
、
、
,
,
.
设平面
的法向量为
,
则
,即
,令
,得
,可得
,
又
,设直线
与平面
所成角为
,
所以
.
因此,直线
与平面
所成角的正弦值为
.
科目:高中数学 来源: 题型:
【题目】如图,点
是以
为直径的圆上的动点(异于
,
),已知
,
,
平面
,四边形
为平行四边形.
![]()
(1)求证:
平面
;
(2)当三棱锥
的体积最大时,求平面
与平面
所成的锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某度假酒店为了解会员对酒店的满意度,从中抽取50名会员进行调查,把会员对酒店的“住宿满意度”与“餐饮满意度”都分为五个评分标准:1分(很不满意);2分(不满意);3分(一般);4分(满意);5分(很满意).其统计结果如下表(住宿满意度为
,餐饮满意度为
)
![]()
(1)求“住宿满意度”分数的平均数;
(2)求“住宿满意度”为3分时的5个“餐饮满意度”人数的方差;
(3)为提高对酒店的满意度,现从
且
的会员中随机抽取2人征求意见,求至少有1人的“住宿满意度”为2的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】垃圾分类是对垃圾进行有效处置的一种科学管理方法,为了了解居民对垃圾分类的知晓率和参与率,引导居民积极行动,科学地进行垃圾分类,某小区随机抽取年龄在区间[25,85]上的50人进行调研,统计出年龄频数分布及了解垃圾分类的人数如表:
![]()
(1)填写下面2x2列联表,并判断能否在犯错误的概率不超过0.01的前提下认为以65岁为分界点居民对了解垃圾分类的有关知识有差异;
![]()
(2)若对年龄在[45,55),[25,35)的被调研人中各随机选取2人进行深入调研,记选中的4人中不了解垃圾分类的人数为X,求随机变量X的分布列和数学期望.
参考公式和数据K2
,其中n=a+b+c+d.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一场突如其来的新冠肺炎疫情在全国蔓延,在党中央的坚强领导和统一指挥下,全国人民众志成城、团结一心,共抗疫情。每天测量体温也就成为了所有人的一项责任,一般认为成年人腋下温度
(单位:℃)平均在36℃~37℃之间即为正常体温,超过37.1℃即为发热。发热状态下,不同体温可分成以下三种发热类型:低热:
;高热:
;超高热(有生命危险):
.
某位患者因发热,虽排除肺炎,但也于12日至26日住院治疗. 医生根据病情变化,从14日开始,以3天为一个疗程,分别用三种不同的抗生素为该患者进行消炎退热. 住院期间,患者每天上午8:00服药,护士每天下午16:00为患者测量腋下体温记录如下:
抗生素使用情况 | 没有使用 | 使用“抗生素A”治疗 | 使用“抗生素B”治疗 | |||||
日期 | 12日 | 13日 | 14日 | 15日 | 16日 | 17日 | 18日 | 19日 |
体温(℃) | 38.7 | 39.4 | 39.7 | 40.1 | 39.9 | 39.2 | 38.9 | 39.0 |
抗生素使用情况 | 使用“抗生素C”治疗 | 没有使用 | |||||
日期 | 20日 | 21日 | 22日 | 23日 | 24日 | 25日 | 26日 |
体温(℃) | 38.4 | 38.0 | 37.6 | 37.1 | 36.8 | 36.6 | 36.3 |
(1)请你计算住院期间该患者体温不低于39℃的各天体温平均值;
(2)在18日—22日期间,医生会随机选取3天在测量体温的同时为该患者进行某一特殊项目“
项目”的检查,求至少两天在高热体温下做“
项目”检查的概率;
(3)抗生素治疗一般在服药后2-8个小时就能出现血液浓度的高峰,开始杀灭细菌,达到消炎退热效果.假设三种抗生素治疗效果相互独立,请依据表中数据,判断哪种抗生素治疗效果最佳,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列:A:a1,a2,…,an,B:b1,b2,…,bn.已知ai,bj∈{0,1}(i=1,2,…,n;j=1,2,…,n),定义n×n数表
,其中xij
.
(1)若A:1,1,1,0,B:0,1,0,0,写出X(A,B);
(2)若A,B是不同的数列,求证:n×n数表X(A,B)满足“xij=xji(i=1,2,…,n;j=1,2,…,n;i
j)”的充分必要条件为“ak+bk=1(k=1,2,…,n)”;
(3)若数列A与B中的1共有n个,求证:n×n数表X(A,B)中1的个数不大于
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,
.
![]()
(1)求证:B1C⊥AB;
(2)若∠CBB1=60°,AC=BC,且点A在侧面BB1C1C上的投影为点O,求二面角B﹣AA1﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,有下列四个结论:
①
为偶函数;②
的值域为
;
③
在
上单调递减;④
在
上恰有8个零点,
其中所有正确结论的序号为( )
A.①③B.②④C.①②③D.①③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com