【题目】已知函数
.
(1)若函数
的极小值为1,求实数m的值;
(2)若函数
在
时,其图象全部都在第一象限,求实数m的取值范围.
【答案】(1)
.(2)![]()
【解析】
(1)求导得到
,讨论
和
两种情况,根据单调区间计算极值得到答案.
(2)题目等价于
时,
恒成立,构造函数,求导,计算导函数的导数,讨论
和
两种情况,根据函数的单调性计算最值得到答案.
(1)
,
,
①若
,则
在R上恒成立,
∴
在
单调递增,所以
无极值;
②若
,当
时,
,当
时,
,
即
在
单调递减,在
单调递增,
所以
的极小值为
,由
,解得
.
综上所述:
.
(2)
,函数图像全部在第一象限,等价于
时,
恒成立,
令
,
,
令
,
,令
,
显然
在
单调递增,∴
.
当
时,
,所以
,∴
在
单调递增,
∴
,即
,∴
在
单调递增,
所以
,此时符合题意;
当
时,
,∴
,使
,
故
在
恒为负值,
在
单调递减,此时
,
所以
在
单调递减,所以
,此时不符合题意.
故所求m的取值范围为
.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线C的参数方程为
(
为参数,
).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的圾坐标方
,且直线l与曲线C相交于A,B两点.
(1)求曲线C的普通方程和l的直角坐标方程;
(2)若
,点
满足
,求此时r的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂为了提高生产效率,对生产设备进行了技术改造,为了对比技术改造后的效果,采集了技术改造前后各20次连续正常运行的时间长度(单位:天)数据,整理如下:
改造前:19,31,22,26,34,15,22,25,40,35,18,16,28,23,34,15,26,20,24,21
改造后:32,29,41,18,26,33,42,34,37,39,33,22,42,35,43,27,41,37,38,36
(1)完成下面的列联表,并判断能否有99%的把握认为技术改造前后的连续正常运行时间有差异?
超过30 | 不超过30 | |
改造前 | ||
改造后 |
(2)工厂的生产设备的运行需要进行维护,工厂对生产设备的生产维护费用包括正常维护费,保障维护费两种.对生产设备设定维护周期为T天(即从开工运行到第kT天,k∈N*)进行维护.生产设备在一个生产周期内设置几个维护周期,每个维护周期相互独立.在一个维护周期内,若生产设备能连续运行,则只产生一次正常维护费,而不会产生保障维护费;若生产设备不能连续运行,则除产生一次正常维护费外,还产生保障维护费.经测算,正常维护费为0.5万元/次;保障维护费第一次为0.2万元/周期,此后每增加一次则保障维护费增加0.2万元.现制定生产设备一个生产周期(以120天计)内的维护方案:T=30,k=1,2,3,4.以生产设备在技术改造后一个维护周期内能连续正常运行的频率作为概率,求一个生产周期内生产维护费的分布列及均值.
附:![]()
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调査了部分市民(问卷调査表如下表所示),并根据调查结果绘制了尚不完整的统计图表(如下图)
![]()
![]()
由两个统计图表可以求得,选择D选项的人数和扇形统计图中E的圆心角度数分别为( )
A.500,28.8°B.250,28.6°C.500,28.6°D.250,28.8°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
(
)过点
,离心率为
.其左、右焦点分别为
,
,O为坐标原点.直线l:
与以线段
为直径的圆相切,且直线l与椭圆C交于不同的A,B两点.
(1)求椭圆C的方程;
(2)若满足
,求
面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C方程为
,椭圆中心在原点,焦点在x轴上.
(1)证明圆C恒过一定点M,并求此定点M的坐标;
(2)判断直线
与圆C的位置关系,并证明你的结论;
(3)当
时,圆C与椭圆的左准线相切,且椭圆过(1)中的点M,求此时椭圆方程;在x轴上是否存在两定点A,B使得对椭圆上任意一点Q(异于长轴端点),直线
,
的斜率之积为定值?若存在,求出A,B坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国际上通常用年龄中位数指标作为划分国家或地区人口年龄构成的标准:年龄中位数在20岁以下为“年轻型”人口;年龄中位数在20~30岁为“成年型”人口;年龄中位数在30岁以上为“老龄型”人口.
![]()
如图反映了我国全面放开二孩政策对我国人口年龄中位数的影响.据此,对我国人口年龄构成的类型做出如下判断:①建国以来直至2000年为“成年型”人口;②从2010年至2020年为“老龄型”人口;③放开二孩政策之后我国仍为“老龄型”人口.其中正确的是( )
A.②③B.①③C.②D.①②
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业质量检验员为了检测生产线上零件的情况,从生产线上随机抽取了
个零件进行测量,根据所测量的零件尺寸(单位:mm),得到如下的频率分布直方图:
![]()
(1)根据频率分布直方图,求这
个零件尺寸的中位数(结果精确到
);
(2)已知尺寸在
上的零件为一等品,否则为二等品. 将这
个零件尺寸的样本频率视为概率,从生产线上随机抽取
个零件,试估计所抽取的零件是二等品的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com