【题目】已知函数
.
(1)讨论函数
的单调性;
(2)证明:当
时,
.
【答案】(1)当
时,函数
在
单调递增;当
时,函数
在
单调递增,在
单调递减(2)证明见解析;
【解析】
(1)根据
,求导得到
,结合函数的定义域,分
和
两种情况讨论求解.
(2)当
时,
,将证明
,转化为证明
成立,令
,用导数法结合零点存在定理证明
即可.
解法一:(1)因为
,
所以
,
当
时,
,即函数
在
单调递增;
当
时,令
,即
,解得
;
令
,即
,解得
,
综上所述:当
时,函数
在
单调递增;
当
时,函数
在
单调递增,在
单调递减.
(2)当
时,
,
欲证
,只需证
,即证明
,
令
,
所以
,
令
,已知函数
在
单调递增.
又
,
,所以存在唯一
,使得
,
所以当
时,
,即
;
当
时,
,即
;
所以函数
在
单调递减,在
单调递增.
当
时,
,
因为
,所以
,所以
,即
,
所以不等式
成立,即当
时,
.
解法二:(1)同解法一
(2)当
时,
,由(1)知:
在
为增函数,在
为减函数,
所以
,所以
,即
.
欲证
,只需证
,即证
,
即证
,即只需证
,
令
,则
,
令
得
;令
得
,
所以函数
在
为减函数,在
为增函数,
所以
,所以不等式
成立,
即当
时,
.
科目:高中数学 来源: 题型:
【题目】在三棱柱ABC﹣A1B1C1中,E是棱AB的中点,动点F是侧面ACC1A1(包括边界)上一点,若EF//平面BCC1B1,则动点F的轨迹是( )
A.线段B.圆弧
C.椭圆的一部分D.抛物线的一部分
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在《周髀算经》中,把圆及其内接正方形称为圆方图,把正方形及其内切圆称为方圆图.圆方图和方圆图在我国古代的设计和建筑领域有着广泛的应用.山西应县木塔是我国现存最古老、最高大的纯木结构楼阁式建筑,它的正面图如图所示.以该木塔底层的边
作方形,会发现塔的高度正好跟此对角线长度相等.以塔底座的边作方形.作方圆图,会发现方圆的切点
正好位于塔身和塔顶的分界.经测量发现,木塔底层的边
不少于
米,塔顶
到点
的距离不超过
米,则该木塔的高度可能是(参考数据:
)( )
![]()
A.
米B.
米C.
米D.
米
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】金刚石是碳原子的一种结构晶体,属于面心立方晶胞(晶胞是构成晶体的最基本的几何单元),即碳原子处在立方体的
个顶点,
个面的中心,此外在立方体的对角线的
处也有
个碳原子,如图所示(绿色球),碳原子都以共价键结合,原子排列的基本规律是每一个碳原子的周围都有
个按照正四面体分布的碳原子.设金刚石晶胞的棱长为
,则正四面体
的棱长为__________;正四面体
的外接球的体积是__________.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的对称中心为原点
,焦点在
轴上,焦距为
,点
在该椭圆上.
![]()
(1)求椭圆
的方程;
(2)直线
与椭圆交于
两点,
点位于第一象限,
是椭圆上位于直线
两侧的动点.当点
运动时,满足
,问直线
的斜率是否为定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】改革开放40年来,我国城市基础设施发生了巨大的变化,各种交通工具大大方便了人们的出行需求.某城市的A先生实行的是早九晚五的工作时间,上班通常乘坐公交或地铁加步行.已知从家到最近的公交站或地铁站都需步行5分钟,乘坐公交到离单位最近的公交站所需时间Z1(单位:分钟)服从正态分布N(33,42),下车后步行再到单位需要12分钟;乘坐地铁到离单位最近的地铁站所需时间Z2(单位:分钟)服从正态分布N(44,22),从地铁站步行到单位需要5分钟.现有下列说法:①若8:00出门,则乘坐公交一定不会迟到;②若8:02出门,则乘坐公交和地铁上班迟到的可能性相同;③若8:06出门,则乘坐公交比地铁上班迟到的可能性大;④若8:12出门,则乘坐地铁比公交上班迟到的可能性大.则以上说法中正确的序号是_____.
参考数据:若Z~N(μ,σ2),则P(μ﹣σ<Z≤μ+σ)=0.6826,P(μ﹣2σ<Z≤μ+2σ)=0.9544,P(μ﹣3σ<Z≤μ+3σ)=0.9974
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,以原点O为极点,以x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为
,直线
的参数方程为
(t为参数),
,点A为直线
与曲线C在第二象限的交点,过O点的直线
与直线
互相垂直,点B为直线
与曲线C在第三象限的交点.
(1)写出曲线C的直角坐标方程及直线
的普通方程;
(2)若
,求
的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com