【题目】已知
为坐标原点,椭圆
的右焦点为
,离心率为
,过点
的直线![]()
与
相交于
两点,点
为线段
的中点.
(1)当
的倾斜角为
时,求直线
的方程;
(2)试探究在
轴上是否存在定点
,使得
为定值?若存在,求出点
的坐标;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知圆C满足:圆心在
轴上,且与圆
相外切.设圆C与
轴的交点为M,N,若圆心C在
轴上运动时,在
轴正半轴上总存在定点
,使得
为定值,则点
的纵坐标为_________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图(1),等腰梯形
,
,
,
,
、
分别是
的两个三等分点.若把等腰梯形沿虚线
、
折起,使得点
和点
重合,记为点
,如图(2).
![]()
(1)求证:平面
平面
;
(2)求平面
与平面
所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2x-1,
(a∈R),若对任意x1∈[1,+∞),总存在x2∈R,使f(x1)=g(x2),则实数a的取值范围是()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程
(
为参数),直线
的参数方程
(
为参数).
(1)求曲线
在直角坐标系中的普通方程;
(2)以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,当曲线
截直线
所得线段的中点极坐标为
时,求直线
的倾斜角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程
(
为参数),直线
的参数方程
(
为参数).
(1)求曲线
在直角坐标系中的普通方程;
(2)以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,当曲线
截直线
所得线段的中点极坐标为
时,求直线
的倾斜角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:若函数
在区间
上的值域为
,则称区间
是函数
的“完美区间”,另外,定义区间
的“复区间长度”为
,已知函数
,则( )
A.
是
的一个“完美区间”
B.
是
的一个“完美区间”
C.
的所有“完美区间”的“复区间长度”的和为![]()
D.
的所有“完美区间”的“复区间长度”的和为![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的中心为原点
,左焦点为
,离心率为
,不与坐标轴垂直的直线
与椭圆
交于
两点.
(1)若
为线段
的中点,求直线
的方程.
(2)求点
是直线
上一点,点
在椭圆
上,且满足
,设直线
与直线
的斜率分别为
,问:
是否为定值?若是,请求出
的值;若不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com