【题目】2020年春季,某出租汽车公司决定更换一批新的小汽车以代替原来报废的出租车,现有采购成本分别为
万元/辆和
万元/辆的
两款车型,根据以往这两种出租车车型的数据,得到两款出租车车型使用寿命频数表如下:
![]()
(1)填写下表,并判断是否有
的把握认为出租车的使用寿命年数与汽车车型有关?
![]()
(2)从
和
的车型中各随机抽取
车,以
表示这
车中使用寿命不低于
年的车数,求
的分布列和数学期望;
(3)根据公司要求,采购成本由出租公司负责,平均每辆出租车每年上交公司
万元,其余维修和保险等费用自理.假设每辆出租车的使用寿命都是整数年,用频率估计每辆出租车使用寿命的概率,分别以这
辆出租车所产生的平均利润作为决策依据,如果你是该公司的负责人,会选择采购哪款车型?
附:
,
.
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
【答案】(1)填表答案见解析,有
的把握认为出租车的使用寿命年数与汽车车型有关.(2)分布列答案见解析,数学期望:
.(3)采购
款车型.
【解析】
(1)根据题目所给数据填写
列联表,计算出
的值,由此判断出有
的把握认为出租车的使用寿命年数与汽车车型有关.
(2)利用相互独立事件概率乘法公式计算出分布列,并求得数学期望.
(3)分别计算出两种车型的平均利润,由此判断出采购
款车型.
(1)填表如下:
使用寿命不高于 | 使用寿命不低于 | 总计 | |
| 30 | 70 | 100 |
| 50 | 50 | 100 |
总计 | 80 | 120 | 200 |
由列联表可知
,
故有
的把握认为出租车的使用寿命年数与汽车车型有关.
(2)由题意可知,型车使用寿命不低于
年的车数占
,低于
年的车数占
;
型车使用寿命不低于
年的车数占
,低于
年的车数占
.且
可能的取值为
.
,
,
,
的分布列为:
| 0 | 1 | 2 | |||
|
|
|
|
分数不少于120分 | 分数不足120分 | 合计 | |
线上学习时间不少于5小时 | 4 | 19 | |
线上学习时间不足5小时 | |||
合计 | 45 |
(1)请完成上面
列联表;并判断是否有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”;
(2)①按照分层抽样的方法,在上述样本中从分数不少于120分和分数不足120分的两组学生中抽取9名学生,设抽到不足120分且每周线上学习时间不足5小时的人数是
,求
的分布列(概率用组合数算式表示);
②若将频率视为概率,从全校高三该次检测数学成绩不少于120分的学生中随机抽取20人,求这些人中每周线上学习时间不少于5小时的人数的期望和方差.
(下面的临界值表供参考)
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式
其中
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和Sn=n2+pn,且a4,a7,a12成等比数列.
(1)求数列{an}的通项公式;
(2)若bn
,求数列{bn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列
的前
项和为
,且
.
(1)求证:数列
为等比数列;
(2)设数列
的前
项和为
,求证:
为定值;
(3)判断数列
中是否存在三项成等差数列,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在3世纪中期,我国古代数学家刘徽在《九章算术注》中提出了割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”.这可视为中国古代极限观念的佳作.割圆术可以视为将一个圆内接正
边形等分成
个等腰三角形(如图所示),当
变得很大时,等腰三角形的面积之和近似等于圆的面积.运用割圆术的思想,可得到sin3°的近似值为( )(
取近似值3.14)
![]()
A.0.012B.0.052
C.0.125D.0.235
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com