精英家教网 > 高中数学 > 题目详情

【题目】2020年春季,某出租汽车公司决定更换一批新的小汽车以代替原来报废的出租车,现有采购成本分别为万元/辆和万元/辆的两款车型,根据以往这两种出租车车型的数据,得到两款出租车车型使用寿命频数表如下:

1)填写下表,并判断是否有的把握认为出租车的使用寿命年数与汽车车型有关?

2)从的车型中各随机抽取车,以表示这车中使用寿命不低于年的车数,求的分布列和数学期望;

3)根据公司要求,采购成本由出租公司负责,平均每辆出租车每年上交公司万元,其余维修和保险等费用自理.假设每辆出租车的使用寿命都是整数年,用频率估计每辆出租车使用寿命的概率,分别以这辆出租车所产生的平均利润作为决策依据,如果你是该公司的负责人,会选择采购哪款车型?

附:.

0.050

0.010

0.001

3.841

6.635

10.828

【答案】1)填表答案见解析,有的把握认为出租车的使用寿命年数与汽车车型有关.(2)分布列答案见解析,数学期望:.(3)采购款车型.

【解析】

1)根据题目所给数据填写列联表,计算出的值,由此判断出有的把握认为出租车的使用寿命年数与汽车车型有关.

2)利用相互独立事件概率乘法公式计算出分布列,并求得数学期望.

3)分别计算出两种车型的平均利润,由此判断出采购款车型.

1)填表如下:

使用寿命不高于

使用寿命不低于

总计

30

70

100

50

50

100

总计

80

120

200

由列联表可知

故有的把握认为出租车的使用寿命年数与汽车车型有关.

2)由题意可知,型车使用寿命不低于年的车数占,低于年的车数占型车使用寿命不低于年的车数占,低于年的车数占.且可能的取值为.

的分布列为:

其数学期望.

3)用频率估计概率,这款出租车的平均利润为:

(万元),

款出租车的平均利润为:(万元),

故会选择采购款车型.

练习册系列答案

0

1

2

年级 高中课程 年级 初中课程
高一 高一免费课程推荐! 初一 初一免费课程推荐!
高二 高二免费课程推荐! 初二 初二免费课程推荐!
高三 高三免费课程推荐! 初三 初三免费课程推荐!
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,在其定义域内有两个不同的极值点.

(1)求的取值范围;

(2)记两个极值点为,且,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=exx2ax2+axaR.

1)当a1时,求fx)的极值;

2)若fx)恰有两个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)证明:函数在定义域上只有一个零点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出“停课不停学”的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试中数学平均成绩不足120分的占,统计成绩后得到如下列联表:

分数不少于120

分数不足120

合计

线上学习时间不少于5小时

4

19

线上学习时间不足5小时

合计

45

1)请完成上面列联表;并判断是否有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”;

2)①按照分层抽样的方法,在上述样本中从分数不少于120分和分数不足120分的两组学生中抽取9名学生,设抽到不足120分且每周线上学习时间不足5小时的人数是,求的分布列(概率用组合数算式表示);

②若将频率视为概率,从全校高三该次检测数学成绩不少于120分的学生中随机抽取20人,求这些人中每周线上学习时间不少于5小时的人数的期望和方差.

(下面的临界值表供参考)

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点满足,则满足条件的所形成的平面区域的面积为①________的最大值为②________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Snn2+pn,且a4a7a12成等比数列.

1)求数列{an}的通项公式;

2)若bn,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,且.

(1)求证:数列为等比数列;

2)设数列的前项和为,求证: 为定值;

3)判断数列中是否存在三项成等差数列,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】3世纪中期,我国古代数学家刘徽在《九章算术注》中提出了割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”.这可视为中国古代极限观念的佳作.割圆术可以视为将一个圆内接正边形等分成个等腰三角形(如图所示),当变得很大时,等腰三角形的面积之和近似等于圆的面积.运用割圆术的思想,可得到sin3°的近似值为( (取近似值3.14)

A.0.012B.0.052

C.0.125D.0.235

查看答案和解析>>