精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)讨论函数的单调性;

2)证明:函数在定义域上只有一个零点

【答案】1)答案见解析;(2)证明见解析.

【解析】

1)首先求出函数的导函数,令,再对分类讨论可得;

2)由(1)函数的单调性结合零点存在性定理,分类讨论计算可得;

解:(1

,易知,当时,;当时,

①当时,,故单调递减;

②当时,令,令

单调递减,在单调递增;

③当时,令,令

单调递减,在单调递增.

综上,当时,单调递减;

时,单调递减,在单调递增;

时,单调递减,在单调递增.

2)由(1)知,①当时,单调递减;

,即,故函数上只有一个零点.

②当时,单调递减,在单调递增;故的极小值为,因此上无零点;的极大值为,又,故上有一个零点,因此,函数上只有一个零点.

③当时,单调递减,在单调递增.故的极小值为,又,故上有一个零点,的极大值为,又,故上无零点,因此,函数上只有一个零点.

综上,函数上只有一个零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,则当时,讨论的单调性;

(2)若,且当时,不等式在区间上有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数 处的切线方程为,求实数的值;

2)设,当时,求的最小值;

3)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】健身馆某项目收费标准为每次60元,现推出会员优惠活动:具体收费标准如下:

消费次数

1

2

3

不少于4

收费比例

0.95

0.90

0.85

0.80

现随机抽取了100位会员统计它们的消费次数,得到数据如下:

消费次数

1

2

3

不少于4

频数

60

25

10

5

假设该项目的成本为每次30元,根据给出的数据回答下列问题:

1)估计1位会员至少消费两次的概率

2)某会员消费4次,求这4次消费获得的平均利润;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为,现有甲,乙二人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,……,取后不放回,直到两人中有一人取到白球即终止,每个球在每一次被取出的机会是等可能的.

(Ⅰ)求袋中原有白球的个数:

(Ⅱ)求取球次数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年,在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵(qian du);阳马指底面为矩形,一侧棱垂直于底面的四棱锥,鳖膈(bie nao)指四个面均为直角三角形的四面体.如图在堑堵中,.

(1)求证:四棱锥为阳马;

(2)若,当鳖膈体积最大时,求锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年春季,某出租汽车公司决定更换一批新的小汽车以代替原来报废的出租车,现有采购成本分别为万元/辆和万元/辆的两款车型,根据以往这两种出租车车型的数据,得到两款出租车车型使用寿命频数表如下:

1)填写下表,并判断是否有的把握认为出租车的使用寿命年数与汽车车型有关?

2)从的车型中各随机抽取车,以表示这车中使用寿命不低于年的车数,求的分布列和数学期望;

3)根据公司要求,采购成本由出租公司负责,平均每辆出租车每年上交公司万元,其余维修和保险等费用自理.假设每辆出租车的使用寿命都是整数年,用频率估计每辆出租车使用寿命的概率,分别以这辆出租车所产生的平均利润作为决策依据,如果你是该公司的负责人,会选择采购哪款车型?

附:.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsinθ2

1M为曲线C1上的动点,点P在线段OM上,且满足,求点P的轨迹C2的直角坐标方程;

2)曲线C2上两点与点Bρ2α),求△OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的参数方程为为参数),直线,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.

1)求直线l和曲线C的极坐标方程;

2)若直线与直线l相交于点A,与曲线C相交于不同的两点MN.的最小值.

查看答案和解析>>

同步练习册答案