£¨2011•¹ã¶«Ä£Ä⣩µÈ±ÈÊýÁÐ{an} ÖУ¬a1£¬a2£¬a3·Ö±ðÊÇϱíµÚÒ»¡¢¶þ¡¢ÈýÐÐÖеÄijһ¸öÊý£¬ÇÒa1£¬a2£¬a3ÖеÄÈκÎÁ½¸öÊý²»ÔÚϱíµÄͬһÁУ®
µÚÒ»ÁÐ µÚ¶þÁÐ µÚÈýÁÐ
µÚÒ»ÐÐ 3 2 10
µÚ¶þÐÐ 6 4 14
µÚÈýÐÐ 9 8 18
£¨¢ñ£©ÇóÊýÁÐ{an} µÄͨÏʽ£»
£¨¢ò£©ÈôÊýÁР{bn} Âú×ã bn=
1
(n+2)log3(
an+1
2
)
£¬¼ÇÊýÁР{bn} µÄǰnÏîºÍΪSn£¬Ö¤Ã÷Sn£¼
3
4
£®
·ÖÎö£º£¨I£©µ±a1=3ʱ£¬²»ºÏÌâÒ⣻µ±a1=2ʱ£¬µ±ÇÒ½öµ±a2=6£¬a3=18ʱ£¬·ûºÏÌâÒ⣻µ±a1=10ʱ£¬²»ºÏÌâÒ⣮Òò´Ëa1=2£¬a2=6£¬a3=18£¬ÓÉ´ËÄÜÇó³öÊýÁÐ{an} µÄͨÏʽ£®
£¨II£©ÒòΪbn=
1
(n+2)log3(
an+1
2
)
£¬ËùÒÔbn=
1
n(n+2)
£¬ÓÉ´ËÀûÓÃÁÑÏîÇóºÍ·¨Äܹ»Ö¤Ã÷Sn£¼
3
4
£®
½â´ð£º½â£º£¨I£©µ±a1=3ʱ£¬²»ºÏÌâÒ⣻
µ±a1=2ʱ£¬µ±ÇÒ½öµ±a2=6£¬a3=18ʱ£¬·ûºÏÌâÒ⣻
µ±a1=10ʱ£¬²»ºÏÌâÒ⣮¡­£¨4·Ö£©£¨Ö»ÒªÕÒ³öÕýÈ·µÄÒ»×é¾Í¸ø3·Ö£©
Òò´Ëa1=2£¬a2=6£¬a3=18£¬
ËùÒÔ¹«±Èq=3£¬¡­£¨4·Ö£©
¹Êan=2•3n-1£®¡­£¨6·Ö£©
£¨II£©ÒòΪbn=
1
(n+2)log3(
an+1
2
)
£¬
ËùÒÔbn=
1
n(n+2)
¡­£¨9·Ö£©
ËùÒÔSn=b1+b2+b3+¡­+bn=
1
1¡Á3
+
1
2¡Á4
+¡­
1
n(n+2)

=
1
2
(1-
1
3
+
1
2
-
1
4
+
1
3
-
1
5
+¡­+
1
n
-
1
n+2
)
¡­£¨12·Ö£©
=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)£¼
3
4
£¬
¹ÊSn£¼
3
4
£®¡­£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²éÊýÁеÄͨÏʽºÍÊýÁÐǰnÏîºÍµÄÇ󷨣¬¿¼²é²»µÈʽµÄÖ¤Ã÷£®½âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£¬×¢ÒâÁÑÏîÇóºÍ·¨µÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•¹ã¶«Ä£Ä⣩¸ø¶¨º¯Êýf(x)=
x2
2(x-1)

£¨1£©ÊÔÇóº¯Êýf£¨x£©µÄµ¥µ÷¼õÇø¼ä£»
£¨2£©ÒÑÖª¸÷Ïî¾ùΪ¸ºµÄÊýÁÐ{an}Âú×㣬4Sn•f(
1
an
)=1
£¬ÇóÖ¤£º-
1
an+1
£¼ln
n+1
n
£¼-
1
an
£»
£¨3£©Éèbn=-
1
an
£¬TnΪÊýÁР{bn} µÄǰnÏîºÍ£¬ÇóÖ¤£ºT2012-1£¼ln2012£¼T2011£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•¹ã¶«Ä£Ä⣩ÒÑÖª¼¯ºÏM={y|y=x2-1£¬x¡ÊR}£¬N={x|y=
2-x2
}
£¬ÔòM¡ÉN=£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•¹ã¶«Ä£Ä⣩ÒÑÖªº¯Êýf£¨x£©=
a-x
+
x
£¨a¡ÊN*£©£¬¶Ô¶¨ÒåÓòÄÚÈÎÒâx1£¬x2£¬Âú×ã|f£¨x1£©-f£¨x2£©|£¼1£¬ÔòÕýÕûÊýaµÄȡֵ¸öÊýÊÇ
5
5
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•¹ã¶«Ä£Ä⣩ÒÑÖªÃüÌâ¡°?x¡ÊR£¬x2+2ax+1£¼0¡±ÊÇÕæÃüÌ⣬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•¹ã¶«Ä£Ä⣩ÒÑÖªÏß¶ÎABµÄÁ½¸ö¶Ëµã·Ö±ðΪA£¨0£¬1£©£¬B£¨1£¬0£©£¬P£¨x£¬y£©ÎªÏß¶ÎABÉϲ»Óë¶ËµãÖØºÏµÄÒ»¸ö¶¯µã£¬Ôò(x+
1
x
)(y+
1
y
)
µÄ×îСֵΪ
25
4
25
4
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸