精英家教网 > 高中数学 > 题目详情
19.设函数f(x)在R上存在导函数f′(x),?x∈R,都有f(x)+f(-x)=x2,在x>0时,f′(x)<x,若f(4-m)-f(m)≥8-4m,则实数m的取值范围为(  )
A.[-2,2]B.[2,+∞)C.[0,+∞)D.(-∞,-2]∪[2,+∞)

分析 构造函数g(x)=f(x)-$\frac{1}{2}$x2,由g(-x)+g(x)=0,可得函数g(x)为奇函数.利用导数可得函数g(x)在R上是减函数,结合函数的单调性解不等式即可.

解答 解:令g(x)=f(x)-$\frac{1}{2}$x2
∵g(-x)+g(x)=f(-x)-$\frac{1}{2}$x2+f(x)-$\frac{1}{2}$x2=0,
∴函数g(x)为奇函数.
∵x∈(0,+∞)时,g′(x)=f′(x)-x<0,
故函数g(x)在(0,+∞)上是减函数,故函数g(x)在(-∞,0)上也是减函数,
由f(0)=0,可得g(x)在R上是减函数,
∴f(4-m)-f(m)=g(4-m)+$\frac{1}{2}$(4-m)2-g(m)-$\frac{1}{2}$m2=g(4-m)-g(m)+8-4m≥8-4m,
∴g(4-m)≥g(m),
∴4-m≤m,解得:m≥2,
∴实数m的取值范围[2,+∞),
故选B.

点评 本题主要考查函数的奇偶性、单调性的应用,体现了转化的数学思想,构造函数利用导数研究函数的单调性是解决本题的关键.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知a,b,c分别为△ABC内角A,B,C的对边,$\frac{sinA}{sinC}=\frac{asinB}{a-bcosC}$.
(Ⅰ)求角B的大小;
(Ⅱ)若△ABC边AC上的高h=b,求$\frac{sinB}{tanA}+\frac{sinB}{tanC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图所示的三角形数阵叫“牛顿调和三角形”,它们是整数的倒数组成的,第n行有n个数且两端的数均为$\frac{1}{n}$(n≥2),每个数是它下一行左右相邻两数的和,如$\frac{1}{1}$=$\frac{1}{2}$+$\frac{1}{2}$,$\frac{1}{2}$=$\frac{1}{3}$+$\frac{1}{6}$,$\frac{1}{3}$=$\frac{1}{4}$+$\frac{1}{12}$,…,则第6行第3个数(从左往右数)为$\frac{1}{60}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若角α=600°的终边上有一点(a,-2),则a的值是(  )
A.$-\frac{{2\sqrt{3}}}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$±\frac{{2\sqrt{3}}}{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)已知f(α)=$\frac{{sin(π-α)cos(π-α)cos(\frac{3π}{2}+α)}}{{cos(\frac{π}{2}+α)sin(π+α)}}$,若α为第二象限角,且$cos(α-\frac{π}{2})=\frac{2}{5}$,求f(α)的值;
(2)已知tanα=3,求2sin2α+sinαcosα-cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知f(x)=x3-2x,过点(1,m)(m≠2)可作曲线y=f(x)的三条切线,则m的取值范围为(-2,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.计算:$\frac{i-2\sqrt{3}}{1+2\sqrt{3}i}$+(3+i17)-${(\frac{1+i}{\sqrt{2}})}^{20}$=4+2i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(-2,0),$\overrightarrow{c}$=(3,2),若向量$\overrightarrow{c}$与向量k$\overrightarrow{a}+\overrightarrow{b}$垂直,则实数k=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x•lnx,g(x)=2mx-1(m∈R).
(Ⅰ)求函数f(x)在x=1处的切线方程;
(Ⅱ)若$?x∈[{\frac{1}{e},e}]$,f(x)>g(x)恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案