【题目】已知集合A={x∈R|x2-ax+b=0},B={x∈R|x2+cx+15=0},A∩B={3},A∪B={3,5}.
(1)求实数a,b,c的值;
(2)设集合P={x∈R|ax2+bx+c≤7},求集合P∩Z.
【答案】(1) a=6,b=9,c=-8;(2) {-2,-1,0,1}
【解析】
(1)因为A∩B={3},所以3∈B,所以32+3c+15=0即得c=-8. 因为A∩B={3},A∪B={3,5},所以A={3},所以方程x2-ax+b=0有两个相等的实数根都是3,从而求出a,b的值.(2)先求出P=
-
≤x≤1},再求集合P∩Z.
(1)因为A∩B={3},所以3∈B,所以32+3c+15=0,c=-8,所以B={x∈R|x2-8x+15=0}={3,5}.
又因为A∩B={3},A∪B={3,5},所以A={3},所以方程x2-ax+b=0有两个相等的实数根都是3,所以a=6,b=9,所以a=6,b=9,c=-8.
(2)不等式ax2+bx+c≤7即6x2+9x-8≤7,
所以2x2+3x-5≤0,
所以-
≤x≤1,
所以P=
-
≤x≤1},
所以P∩Z=
-
≤x≤1}∩Z={-2,-1,0,1}.
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆的中心在原点,焦点在
轴上,长轴长是短轴长的2倍且经过点
,平行于
的直线
在
轴上的截距为
,直线
交椭圆于
两个不同点.
![]()
(1)求椭圆的方程;
(2)求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于数集
,其中
,
,定义向量集
.若对于任意
,使得
,则称
具有性质
.例如
具有性质
.
(
)若
,且
具有性质
,求
的值.
(
)若
具有性质
,求证:
,且当
时,
.
(
)若
具有性质
,且
,
(
为常数),求有穷数列
,
,
,
的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂要建造一个长方形无盖蓄水池,其容积为
立方米,深为
.如果池底每平方米的造价为
元,池壁每平方米的造价为
元,那么怎样设计水池能使总造价最低(设蓄水池池底的相邻两边边长分别为
,
)?最低总造价是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,将一矩形花坛
扩建成一个更大的矩形花坛
,要求
点在
上,
点在
上,且对角线
过
点,已知
米,
米.
![]()
(1)要使矩形
的面积大于
平方米,则
的长应在什么范围内?
(2)当
的长度是多少时,矩形花坛
的面积最小?并求出最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com