【题目】已知椭圆
的左、右焦点分别为
,离心率为
,动点
在椭圆
上,
的周长为6.
![]()
(1)求椭圆
的方程;
(2)设直线
与椭圆
的另一个交点为
,过
分别作直线
的垂线,垂足为
与
轴的交点为
.若四边形
的面积是
面积的3倍,求直线
斜率的取值范围.
【答案】(1)
;(2)
.
【解析】
(1)根据椭圆的离心率和焦点三角形的周长建立方程求出a,c的值即可;
(2)先设出直线PQ的方程为x=my+1,联立方程组得出根与系数关系,利用四边形PMNQ的面积是△PQT面积的3倍,得出t关于m的表达式,由t>2建立不等式,解出m的取值范围,进而根据
得出k的取值范围.
(1)因为P是E上的点,且F1,F2为E的左、右焦点,所以|PF1|+|PF2|=2a,
又因为|F1F2|=2c,△PF1F2的周长为6,所以2a+2c=6,
又因为椭圆的离心率为
,所以
,解得a=2,c=1.所以
,
E的方程为
.
(2)依题意,直线PQ与x轴不重合,故可设直线PQ的方程为x=my+1,
由
,消去x得:(3m2+4)y2+6my-9=0,
设P(x1,y1),Q(x2,y2)则有△>0且
.
设四边形PMNQ的面积和△PQT面积的分别为S1,S2,
则S1=3S2,又因为
,S2=
.
所以
,
即3(t-1)=2t-(x1+x2),得t=3-(x1+x2),
又x1=my1+1,x2=my2+1,于是t=3-(my1+my2+2)=1-m(y1+y2),
所以
,由t>2得
,解得
,
设直线PQ的斜率为k,则
,所以
,
解得
,
所以直线PQ斜率的取值范围是
.
科目:高中数学 来源: 题型:
【题目】如图,平面四边形
中,
,
是
,
中点,
,
,
,将
沿对角线
折起至
,使平面
,则四面体
中,下列结论不正确的是( )
![]()
A.
平面![]()
B.异面直线
与
所成的角为![]()
C.异面直线
与
所成的角为![]()
D.直线
与平面
所成的角为![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《九章算术》中记载的“刍甍”(chu meng)是指底面为矩形,顶部只有一条棱的五面体.如图,五面体
是一个刍甍,其中
是正三角形,
,则以下两个结论:①
;②
,( )
![]()
A.①和②都不成立B.①成立,但②不成立
C.①不成立,但②成立D.①和②都成立
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母至少有一人与他相邻,则不同坐法的总数为
A. 60 B. 72 C. 84 D. 96
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
,
)为奇函数,且相邻两对称轴间的距离为
.
(1)当
时,求
的单调递减区间;
(2)将函数
的图象沿
轴方向向右平移
个单位长度,再把横坐标缩短到原来的
(纵坐标不变),得到函数
的图象.当时
,求函数
的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司生产的某种产品,如果年返修率不超过千分之一,则其生产部门当年考核优秀,现获得该公司2014-2018年的相关数据如下表所示:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年生产台数 | 2 | 4 | 5 | 6 | 8 |
该产品的年利润 | 30 | 40 | 60 | 50 | 70 |
年返修台数(台) | 19 | 58 | 45 | 71 | 70 |
注:![]()
(1)从该公司2014-2018年的相关数据中任意选取3年的数据,求这3年中至少有2年生产部门考核优秀的概率.
(2)利用上表中五年的数据求出年利润
(百万元)关于年生产台数
(万台)的回归直线方程是
①.现该公司计划从2019年开始转型,并决定2019年只生产该产品1万台,且预计2019年可获利32(百万元);但生产部门发现,若用预计的2019年的数据与2014-2018年中考核优秀年份的数据重新建立回归方程,只有当重新估算的
,
的值(精确到0.01),相对于①中
,
的值的误差的绝对值都不超过
时,2019年该产品返修率才可低于千分之一.若生产部门希望2019年考核优秀,能否同意2019年只生产该产品1万台?请说明理由.
(参考公式:
,
,
,
相对
的误差为
.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,设椭圆
的左焦点为
,短轴的两个端点分别为
,且
,点
在
上.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若直线
与椭圆
和圆
分别相切于
,
两点,当
面积取得最大值时,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
过点
,
是该椭圆的左、右焦点,
是上顶点,且
是等腰直角三角形.
(1)求
的方程;
(2)已知
是坐标原点,直线
与椭圆
相交于
两点,点
在
上且满足四边形
是一个平行四边形,求
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com