【题目】如图,平面四边形
中,
,
是
,
中点,
,
,
,将
沿对角线
折起至
,使平面
,则四面体
中,下列结论不正确的是( )
![]()
A.
平面![]()
B.异面直线
与
所成的角为![]()
C.异面直线
与
所成的角为![]()
D.直线
与平面
所成的角为![]()
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)若关于
的方程
在
上恰有两个不相等的实数根,求实数
的取值范围;
(2)是否存在实数
使得
总成立?若存在,求实数
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题:①空间中没有交点的两直线是平行直线或异面直线;②原命题和逆命题真假相反;③若
,则
;④“正方形的两条对角线相等且互相垂直”,其中真命题的个数为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆![]()
的离心率为
,原点到椭圆的上顶点与右顶点连线的距离为
.
(1)求椭圆
的标准方程;
(2)斜率存在且不为零的直线
与椭圆相交于
,
两点,若线段
的垂直平分线的纵截距为-1,求直线
纵截距的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市疾控中心流感监测结果显示,自
年
月起,该市流感活动一度出现上升趋势,尤其是
月以来,呈现快速增长态势,截止目前流感病毒活动度仍处于较高水平,为了预防感冒快速扩散,某校医务室采取积极方式,对感染者进行短暂隔离直到康复.假设某班级已知
位同学中有
位同学被感染,需要通过化验血液来确定感染的同学,血液化验结果呈阳性即为感染,呈阴性即未被感染.下面是两种化验方法: 方案甲:逐个化验,直到能确定感染同学为止;
方案乙:先任取
个同学,将它们的血液混在一起化验,若结果呈阳性则表明感染同学为这
位中的
位,后再逐个化验,直到能确定感染同学为止;若结果呈阴性则在另外
位同学中逐个检测;
(1)求依方案甲所需化验次数等于方案乙所需化验次数的概率;
(2)
表示依方案甲所需化验次数,
表示依方案乙所需化验次数,假设每次化验的费用都相同,请从经济角度考虑那种化验方案最佳.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解某高校大学生是否愿意做志愿者.某调查机构从该高校访问了80人,经过统计,得到如下丢失数据的列联表:(
,表示丢失的数据)
无意愿 | 有意愿 | 总计 | |
男 | a | b | 40 |
女 | 5 | d | A |
总计 | 25 | B | 80 |
(1)求出
的值,并判断:能否有99.9%的把握认为有意愿做志愿者与性别有关;
(2)若表中无意愿做志愿者的5个女同学中,3个是大学三年级同学,2个是大学四年级同学.现从这5个同学中随机选2同学进行进一步调查,求这2个同学是同年级的概率.
附:参考公式及数据:
,其中![]()
| 0.40 | 0.25 | 0.10 | 0.010 | 0.005 | 0.001 |
| 0.708 | l.323 | 2.706 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区对12岁儿童瞬时记忆能力进行调查,瞬时记忆能力包括听觉记忆能力与视觉记忆能力.某班学生共有40人,下表为该班学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3人.由于部分数据丢失,只知道从这40位学生中随机抽取一个,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的概率为
.
视觉 | 视觉记忆能力 | ||||
偏低 | 中等 | 偏高 | 超常 | ||
听觉记忆 能力 | 偏低 | 0 | 7 | 5 | 1 |
中等 | 1 | 8 | 3 |
| |
偏高 | 2 |
| 0 | 1 | |
超常 | 0 | 2 | 1 | 1 | |
(1)试确定![]()
的值;
(2)从40人中任意抽取3人,设具有听觉记忆能力或视觉记忆能力偏高或超常的学生人数为
,求随机变量
的分布列
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,离心率为
,动点
在椭圆
上,
的周长为6.
![]()
(1)求椭圆
的方程;
(2)设直线
与椭圆
的另一个交点为
,过
分别作直线
的垂线,垂足为
与
轴的交点为
.若四边形
的面积是
面积的3倍,求直线
斜率的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com