精英家教网 > 高中数学 > 题目详情

【题目】如图,将直角△ABC沿着平行BC边的直线DE折起,使得平面A′DE⊥平面BCDE,其中D、E分别在AC、AB边上,且AC⊥BC,BC=3,AB=5,点A′为点A折后对应的点,当四棱锥A′-BCDE的体积取得最大值时,求AD的长.

【答案】

【解析】试题分析:由勾股定理易得AC=4,设AD=x,则CD=4﹣x.由AED∽△ABC,得,求出四棱锥A′﹣BCDE的体积V(x)=(0<x<4),由此利用导数性质能求出结果.

试题解析:

由勾股定理得AC=4,设AD=x,则CD=4-x

因为△AED∽△ABC,所以

则四棱锥A′-BCDE的体积为:

所以

时,V′(x)>0,V(x)递增;

时,V′(x)<0,V(x)递减.

时,V(x)取得最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图四边形是矩形的中点交于点平面.

求证:

求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[x]表示不超过x的最大整数,例如:[π]=3. S1=[ ]+[ ]+[ ]=3
S2=[ ]+[ ]+[ ]+[ ]+[ ]=10
S3=[ ]+[ ]+[ ]+[ ]+[ ]+[ ]+ ]=21,
…,
依此规律,那么S10=(
A.210
B.230
C.220
D.240

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求函数f(x)的单调增区间;
(2)若 ,求cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数),其图像是曲线.

(1)设函数的导函数为,若存在三个实数,使得同时成立,求实数的取值范围;

2)已知点为曲线上的动点,在点处作曲线的切线与曲线交于另一点,在点处作曲线的切线,设切线的斜率分别为,问:是否存在常数,使得?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 为f(x)的零点,x= 为y=f(x)图象的对称轴,且f(x)在( )单调,则ω的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由于研究性学习的需要,中学生李华持续收集了手机“微信运动”团队中特定20名成员每天行走的步数,其中某一天的数据记录如下:

5860 6520 7326 6798 7325

8430 8215 7453 7446 6754

7638 6834 6460 6830 9860

8753 9450 9860 7290 7850

对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:

步数分组统计表(设步数为x

组别

步数分组

频数

A

5500≤x<6500

2

B

6500≤x<7500

10

C

7500≤x<8500

m

D

8500≤x<9500

2

E

9500≤x<10500

n

(Ⅰ)写出mn的值,若该“微信运动”团队共有120人,请估计该团队中一天行走步数不少于7500步的人数;

(Ⅱ)记C组步数数据的平均数与方差分别为v1 ,E组步数数据的平均数与方差分别为v2 ,试分别比较v1v2 的大小;(只需写出结论)

(Ⅲ)从上述A,E两个组别的步数数据中任取2个数据,求这2个数据步数差的绝对值大于3000步的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD﹣A1B1C1D1中,E,F,G,H分别为AA1 , AB,BB1 , B1C1的中点,则异面直线EF与GH所成的角等于(
A.45°
B.60°
C.90°
D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四面体中, ,二面角 的余弦值是则该四面体外接球的表面积是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案