精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=b·ax(其中ab为常量,且a>0,a≠1)的图象经过点A(1,6),B(3,24).

(1)f(x);

(2)若不等式()x+()xm≥0x(-∞,1]时恒成立,求实数m的取值范围.

【答案】(1)f(x)=3·2x.(2)(-∞,]

【解析】

(1)代入条件,解方程组得a,b,即得结果,(2)分离变量转化为求对应函数最值问题,再根据指数函数单调性确定最小值取法,即得实数m的取值范围.

(1)A(1,6),B(3,24)代入f(x)=b·ax,得

结合a>0a≠1,解得

f(x)=3·2x.

(2)要使()x+()xm(-∞,1]上恒成立

只需保证函数y=()x+()x(-∞,1]上的最小值不小于m即可.

∵函数y=()x+()x(-∞,1]上为减函数,

∴当x=1时,y=()x+()x有最小值.

∴只需m即可.

m的取值范围(-∞,]

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数fx)=ax2+bx+cabc∈R),若x=﹣1为函数yfxex的一个极值点,则下列图象不可能为yfx)的图象是(  )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着雾霾的日益严重,中国部分省份已经实施了“煤改气”的计划来改善空气质量指数.2017年支撑我国天然气市场消费增长的主要资源是国产常规气和进口天然气,资源每年的增量不足以支撑天然气市场连续亿立方米的年增量.进口LNG和进口管道气受到接收站、管道能力和进口气价资源的制约.未来,国产常规气产能释放的红利将会逐步减弱,产量增量将维持在亿方以内.为了测定某市是否符合实施煤改气计划的标准,某监测站点于2016年8月某日起连续天监测空气质量指数(AQI),数据统计如下:

1)根据上图完成下列表格

空气质量指数(

天数

2)计算这天中,该市空气质量指数的平均数;

3)若按照分层抽样的方法,从空气质量指数在以及的等级中抽取天进行调研,再从这天中任取天进行空气颗粒物分析,求恰有天空气质量指数在上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥 都是等边三角形平面平面 .

(Ⅰ)求证:平面平面

上一点平面时,三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数在定义域A上的值域为,则区间A不可能为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)的定义域为D={x|x≠0},且满足对于任意x1x2D,有f(x1·x2)=f(x1)+f(x2).

(1)求f(1)的值;

(2)判断f(x)的奇偶性并证明你的结论;

(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函数,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的五面体中,四边形为菱形,且 平面 中点.

1求证: 平面

2若平面平面,求到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

讨论函数的单调性

在区间上恒成立求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点分别是椭圆 的左、右焦点,过点且与轴垂直的直线与椭圆交于两点.若为锐角,则该椭圆的离心率的取值范围是_____

查看答案和解析>>

同步练习册答案