精英家教网 > 高中数学 > 题目详情

【题目】据报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改革”引起广泛关注,为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3 000人进行调查,就“是否取消英语听力”问题进行了问卷调查统计,结果如下表:

态度

调查人群

应该取消

应该保留

无所谓

在校学生

2100人

120人

y人

社会人士

500人

x人

z人

已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.06.

(1)现用分层抽样的方法在所有参与调查的人中抽取300人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?

(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人,然后从这6人中随机抽取2人,求这2人中恰好有1个人为在校学生的概率.

【答案】(1)22.(2)

【解析】

1)先由抽到持“应该保留”态度的人的概率为0.06,由已知条件求出,再求出持“无所谓”态度的人数,由此利用抽样比能求出应在“无所谓”态度抽取的人数;

2)先根据分层抽样,求出在校学生和社会人士的人数,再计算出这6人中任意选取2人的情况总数,及满足恰好1个人为在校学生的情况数,代入古典概型的概率计算公式,即可求解.

(1)由抽到持“应该保留”态度的人的概率为0.06,∴,∴

∴持“无所谓”态度的人数共有

∴应在“无所谓”态度抽取人,

(2)由(1)知持“应该保留”态度的一共有180人,

∴在所抽取的6人中,在校学生为人,分别记为1,2,3,4,

社会人士为人,记为

则这6人中任意选取2人,共有15种不同情况,分别为

这2人中恰好有1个人为在校学生:共8种,故这2人中恰好有1个人为在校学生的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

(1)若曲线在点处的切线与轴平行,求

(2)当时,函数的图象恒在轴上方,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知△ABC的顶点A20),B04),且AC=BC,则△ABC的欧拉线的方程为( )

A.x+2y+3=0B.2x+y+3=0C.x﹣2y+3=0D.2x﹣y+3=0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在菱形中,为线段的中点(如图1).将沿折起到的位置,使得平面平面为线段的中点(如图2).

(Ⅰ)求证:

(Ⅱ)求证:平面

(Ⅲ)当四棱锥的体积为时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥P-ABCD中,四边形ABCD为平行四边形,△PCD为正三角形,∠BAD=30°AD=4AB=2,平面PCD⊥平面ABCDEPC中点.

1)证明:BEPC

2)求多面体PABED的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】矩形ABCD中,,沿对角线AC将三角形ADC折起,得到四面体,四面体 外接球表面积为,当四面体的体积取最大值时,四面体的表面积为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为上一点,且

(1)求的方程;

(2)过点的直线与抛物线相交于两点,分别过点两点作抛物线的切线,两条切线相交于点,点关于直线的对称点,判断四边形是否存在外接圆,如果存在,求出外接圆面积的最小值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆的左、右顶点,为椭圆的左、右焦点,点为椭圆上一点(点在第一象限),线段与圆相切于点,且点为线段的中点.

(1)求线段的长;

(2)求椭圆的离心率;

(3)设直线交椭圆于两点(其中点在第一象限),过点的平行线交椭圆于点于点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴长为6,离心率为.

(1)求椭圆C的标准方程;

(2)设椭圆C的左右焦点分别为,左右顶点分别为AB,点MN为椭圆C上位于x轴上方的两点,且,直线的斜率为,记直线AMBN的斜率分别为,试证明:的值为定值.

查看答案和解析>>

同步练习册答案