【题目】如图,四棱锥P﹣ABCD的底面是梯形.BC∥AD,AB=BC=CD=1,AD=2,
,![]()
![]()
(Ⅰ)证明;AC⊥BP;
(Ⅱ)求直线AD与平面APC所成角的正弦值.
【答案】(Ⅰ)见解析(Ⅱ)
.
【解析】
(I)取
的中点
,连接
,通过证明
平面
得出
;
(II)以
为原点建立坐标系,求出平面
的法向量
,通过计算
与
的夹角得出
与平面
所成角.
(I)证明:取AC的中点M,连接PM,BM,
∵AB=BC,PA=PC,
∴AC⊥BM,AC⊥PM,又BM∩PM=M,
∴AC⊥平面PBM,
∵BP平面PBM,
∴AC⊥BP.
(II)解:∵底面ABCD是梯形.BC∥AD,AB=BC=CD=1,AD=2,
∴∠ABC=120°,
∵AB=BC=1,∴AC
,BM
,∴AC⊥CD,
又AC⊥BM,∴BM∥CD.
∵PA=PC
,CM
,∴PM
,
∵PB
,∴cos∠BMP
,∴∠PMB=120°,
以M为原点,以MB,MC的方向为x轴,y轴的正方向,
以平面ABCD在M处的垂线为z轴建立坐标系
则A(0,
,0),C(0,
,0),P(
,0,
),D(﹣1,
,0),
∴
(﹣1,
,0),
(0,
,0),
(
,
,
),
设平面ACP的法向量为
(x,y,z),则
,即
,
令x
得
(
,0,1),
∴cos
,
,
∴直线AD与平面APC所成角的正弦值为|cos
,
|
.
![]()
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,短轴长为
.
(1)求椭圆
的标准方程;
(2)若椭圆
的左焦点为
,过点
的直线
与椭圆
交于
两点,则在
轴上是否存在一个定点
使得直线
的斜率互为相反数?若存在,求出定点
的坐标;若不存在,也请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图①,△ABC是以AC为斜边的等腰直角三角形,△BCD是等边三角形.如图②,将△BCD沿BC折起,使平面BCD⊥平面ABC,记BC的中点为E,BD的中点为M,点F、N在棱AC上,且AF=3CF,C
.
![]()
(1)试过直线MN作一平面,使它与平面DEF平行,并加以证明;
(2)记(1)中所作的平面为α,求平面α与平面BMN所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,给出下列结论:
(1)若对任意
,且
,都有
,则
为R上的减函数;
(2)若
为R上的偶函数,且在
内是减函数,
(-2)=0,则
>0解集为(-2,2);
(3)若
为R上的奇函数,则
也是R上的奇函数;
(4)t为常数,若对任意的
,都有
则
关于
对称。
其中所有正确的结论序号为_________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右焦点F与抛物线
焦点重合,且椭圆的离心率为
,过
轴正半轴一点
且斜率为
的直线
交椭圆于
两点.
(1)求椭圆的标准方程;
(2)是否存在实数
使以线段
为直径的圆经过点
,若存在,求出实数
的值;若不存在说明理由.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com