精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2
3
cos2x+2sinxcosx-
3

(1)求函数f(x)的最小正周期;(2)求函数f(x)的递增区间;(3)当x∈[-
π
3
,  
π
6
]
时,求f(x)的值域.
分析:利用二倍角公式以及两角和的正弦函数化简函数为一个角的一个三角函数的形式,
(1)直接利用周期公式求出函数f (x)的最小正周期;
(2)通过正弦函数的单调增区间,直接求出函数f (x)的单调减区间;
(3)先利用x∈[-
π
3
,  
π
6
]
,得到-
π
3
≤2x+
π
3
3
;再结合正弦函数的图象即可得到答案.
解答:解:f(x)=2
3
cos2x+2sinxcosx-
3
=
3
(2cos2x-1)+sin2x
=
3
cos2x+sin2x
=2sin(2x+
π
3
)
(5分)
(1)f(x)的最小正周期T=π(7分)
(2)由2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2
   解得  kπ-
12
≤x≤kπ+
π
12
,k∈Z

∴f(x)的递增区间为[kπ-
12
,kπ+
π
12
],k∈Z
(10分)
(3)∵-
π
3
≤x≤
π
6

-
π
3
≤2x+
π
3
3

-
3
2
≤sin(2x+
π
3
)≤1

-
3
≤2sin(2x+
π
3
)≤2

∴f(x)的值域为[-
3
,  2]
(13分)
点评:本题是中档题,考查三角函数的化简求值,最值、单调性、周期,主要考查基本知识的灵活应用,基础知识的掌握的熟练程度,决定解题的好坏和快慢.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-xx+1

(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1,x≤0
x
,x>0
,则f[f(-2)]=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函数f(x)的值域和最小正周期;
(2)当x∈[0,2π]时,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2-
ax+1
(a∈R)
的图象过点(4,-1)
(1)求a的值;
(2)求证:f(x)在其定义域上有且只有一个零点;
(3)若f(x)+mx>1对一切的正实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],则当x=
3
3
时,函数f(x)有最大值,最大值为
2
3
2
3

查看答案和解析>>

同步练习册答案