【题目】已知过点
的动直线
与圆
相交于
、
两点.
(1)当
时,求直线
的方程;
(2)设动点
满足
,求点
的轨迹方程.
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
的右焦点为F(2,0),过点F的直线交椭圆于M、N两点且MN的中点坐标为
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l不经过点P(0,b)且与C相交于A,B两点,若直线PA与直线PB的斜率的和为1,试判断直线 l是否经过定点,若经过定点,请求出该定点;若不经过定点,请给出理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查民众对国家实行“新农村建设”政策的态度,现通过网络问卷随机调查了年龄在20周岁至80周岁的100人,他们年龄频数分布和支持“新农村建设”人数如下表:
![]()
(1)根据上述统计数据填下面的2×2列联表,并判断是否有95%的把握认为以50岁为分界点对“新农村建设”政策的支持度有差异;
![]()
(2)为了进一步推动“新农村建设”政策的实施,中央电视台某节目对此进行了专题报道,并在节目最后利用随机拨号的形式在全国范围内选出4名幸运观众(假设年龄均在20周岁至80周岁内),给予适当的奖励.若以频率估计概率,记选出4名幸运观众中支持“新农村建设”人数为
,试求随机变量
的分布列和数学期望.
参考数据:
![]()
参考公式:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在长方体
中,
,
,
分别是面
,面
,面
的中心,
,
.
![]()
(1)求证:平面
平面
;
(2)求三棱锥
的体积;
(3)在棱
上是否存在点
,使得平面
平面
?如果存在,请求出
的长度;如果不存在,求说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是边长为2的菱形,
,
,平面
平面
,点
为棱
的中点.
![]()
(Ⅰ)在棱
上是否存在一点
,使得
平面
,并说明理由;
(Ⅱ)当二面角
的余弦值为
时,求直线
与平面
所成的角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将一枚质地均匀的硬币连掷三次,事件“恰出现1次反面朝上”的概率记为
,现采用随机模拟的方法估计
的值:用计算机产生了20组随机数,其中出现“0”表示反面朝上,出现“1”表示正面朝上,结果如下,若出现“恰有1次反面朝上”的频率记为
,则
,
分别为( )
111 001 011 010 000 111 111 111 101 010
000 101 011 010 001 011 100 101 001 011
A.
,
B.
,
C.
,
D.
,![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com