【题目】已知数列{an}的各项均为整数,其前n项和为Sn.规定:若数列{an}满足前r项依次成公差为1的等差数列,从第r﹣1项起往后依次成公比为2的等比数列,则称数列{an}为“r关联数列”.
(1)若数列{an}为“6关联数列”,求数列{an}的通项公式;
(2)在(1)的条件下,求出Sn,并证明:对任意n∈N*,anSn≥a6S6;
(3)已知数列{an}为“r关联数列”,且a1=﹣10,是否存在正整数k,m(m>k),使得a1+a2+…+ak﹣1+ak=a1+a2+…+am﹣1+am?若存在,求出所有的k,m值;若不存在,请说明理由.
【答案】(1)
(或
)
(2)见解析;(3)存在
或
或
或
.
【解析】
试题(1)若数列{an}为“6关联数列”,{an}前6项为等差数列,从第5项起为等比数列,可得a6=a1+5,a5=a1+4,且
,即
,解得a1,即可求数列{an}的通项公式;
(2)由(1)得
(或
,可见数列{anSn}的最小项为a6S6=﹣6,即可证明:对任意n∈N*,anSn≥a6S6;
(3)
,分类讨论,求出所有的k,m值.
解:(1)∵数列{an}为“6关联数列”,
∴{an}前6项为等差数列,从第5项起为等比数列,
∴a6=a1+5,a5=a1+4,且
,即
,解得a1=﹣3
∴
(或
)
(2)由(1)得
(或
)
,
{Sn}:﹣3,﹣5,﹣6,﹣6,﹣5,﹣3,1,9,25,…{anSn}:9,10,6,0,﹣5,﹣6,4,72,400,…,
可见数列{anSn}的最小项为a6S6=﹣6,
证明:
,
列举法知当n≤5时,(anSn)min=a5S5=﹣5;
当n≥6时,
,设t=2n﹣5,则
.
(3)数列{an}为“r关联数列”,且a1=﹣10,∵![]()
∴![]()
①当k<m≤12时,由
得(k+m)(k﹣m)=21(k﹣m)k+m=21,k,m≤12,m>k,∴
或
.
②当m>k>12时,由2k﹣11﹣56=2m﹣11﹣56得m=k,不存在
③当k≤12,m>12时,由
,2m﹣10=k2﹣21k+112
当k=1时,2m﹣10=92,mN*;当k=2时,2m﹣10=74,mN*;
当k=3时,2m﹣10=58,mN*;当k=4时,2m﹣10=44,mN*;
当k=5时,2m﹣10=25,m=15∈N*;当k=6时,2m﹣10=22,mN*;
当k=7时,2m﹣10=14,mN*;当k=8时,2m﹣10=23,m=13∈N*;
当k=9时,2m﹣10=22,m=12舍去;当k=10时,2m﹣10=2,m=11舍去
当k=11时,2m﹣10=2,m=11舍去;当k=12时,2m﹣10=22,m=12舍去
综上所述,∴存在
或
或
或
.
科目:高中数学 来源: 题型:
【题目】设数列
的前
项和为
,对一切
,点
都在函数
的图象上.
(1)求
,归纳数列
的通项公式(不必证明);
(2)将数列
依次按1项、2项、3项、4项循环地分为
,
,
,
;
,
,
,
;
,…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为
,求
的值;
(3)设
为数列
的前
项积,若不等式
对一切
都成立,其中
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项和为
,且
,
(
).
(1)计算
,
,
,
,并求数列
的通项公式;
(2)若数列
满足
,求证:数列
是等比数列;
(3)由数列
的项组成一个新数列
:
,
,
,
,
,设
为数列
的前
项和,试求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右焦点与短轴两端点构成一个面积为2的等腰直角三角形,
为坐标原点.
(1)求椭圆
的方程;
(2)设点
在椭圆
上,点
在直线
上,且
,求证:
为定值;
(3)设点
在椭圆
上运动,
,且点
到直线
的距离为常数
,求动点
的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】自然状态下的鱼类是一种可再生资源,为了持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响.用
表示某鱼群在第
年年初的总量且
.不考虑其他因素,设在第
年内鱼群的繁殖量及捕捞量都与
成正比,死亡量与
成正比,这些比例系数依次为正常数
,
,![]()
(1)求
与
的关系式
(2)若每年年初鱼群的总量保持不变,求
,
,
,
所应满足的条件
(3)设
,
,为保证对任意
,都有
,则捕捞强度
的最大允许值是多少?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设甲乙两地相距100海里,船从甲地匀速驶到乙地,已知某船的最大船速是36海里/时:当船速不大于每小时30海里/时,船每小时使用的燃料费用和船速成正比;当船速不小于每小时30海里/时,船每小时使用的燃料费用和船速的平方成正比;当船速为30海里/时,它每小时使用的燃料费用为300元;其余费用(不论船速为多少)都是每小时480元;
(1)试把每小时使用的燃料费用P(元)表示成船速v(海里/时)的函数;
(2)试把船从甲地行驶到乙地所需要的总费用Y表示成船速v的函数;
(3)当船速为每小时多少海里时,船从甲地到乙地所需要的总费用最少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,动点
到定点
的距离与它到直线
的距离相等.
(1)求动点
的轨迹
的方程;
(2)设动直线
与曲线
相切于点
,与直线
相交于点
.
证明:以
为直径的圆恒过
轴上某定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a,b是不相等的两个正数,在a,b之间插入两组实数:x1,x2,…,xn和y1,y2,…,yn,(n∈N*,且n≥2),使得a,x1,x2,…,xn,b成等差数列,a,y1,y2,…,yn,b成等比数列,给出下列四个式子:①
;②
;③
;④
.其中一定成立的是( )
A.①②③B.①②④C.①③④D.②③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com