【题目】设函数
.
(1)讨论函数
的单调性;
(2)若函数
在
时恒成立,求实数
的取值范围;
(3)若函数
,求证:函数
的极大值小于1.
【答案】(1)见解析;(2)
(3)见证明
【解析】
(1)先对函数求导,分别讨论
和
,即可得出结果;
(2)先将函数
在
时恒成立,转化为
在
上恒成立,再设
,
,利用导数方法求出
的最大值,即可得出结果;
(3)先由题意得到
,对
求导,利用导数的方法研究其单调性,即可求出其极大值,得出结论.
解:(1)由于
,
,
当
时,
,
在
上单调递减;
当
时,由
得
,由
得
;
所以
在
上单调递减,
上单调递增.
(2)若
在
上恒成立,
只需
,
.
令
,
,则
,
由
得
,所以
,
随
的变化情况如下:
|
| 1 |
|
| + | 0 | - |
|
| 极大值 |
|
所以
,所以
.
(3)由题知
,
,
令
,
,
则函数
在
上单调递减,
,
,
所以存在唯一的
,
当
时,
;当
时,
.
所以函数
的单调递增区间是
,单调递减区间是
,
其中
,所以函数
有极大值.
函数
的极大值是
,由
,得
,
所以
,因为
,所以
,即
,
所以
的极大值小于1.
科目:高中数学 来源: 题型:
【题目】据调查显示,某高校
万男生的身高服从正态分布
,现从该校男生中随机抽取
名进行身高测量,将测量结果分成
组:
,
,
,
,
,
,并绘制成如图所示的频率分布直方图.
![]()
(Ⅰ)求这
名男生中身高在
(含
)以上的人数;
(Ⅱ)从这
名男生中身高在
以上(含
)的人中任意抽取
人,该
人中身高排名(从高到低)在全校前
名的人数记为
,求
的数学期望.
(附:参考数据:若
服从正态分布
,则
,
,
.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量
=(sinx,cosx),
=(sin(x﹣
),sinx),函数f(x)=2![]()
,g(x)=f(
).
(1)求f(x)在[
,π]上的最值,并求出相应的x的值;
(2)计算g(1)+g(2)+g(3)+…+g(2014)的值;
(3)已知t∈R,讨论g(x)在[t,t+2]上零点的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
年春节期间,某服装超市举办了一次有奖促销活动,消费每超过
元(含
元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有
个形状、大小完全相同的小球(其中红球
个,黑球
个)的抽奖盒中,一次性摸出
个球,其中奖规则为:若摸到
个红球,享受免单优惠;若摸出
个红球则打
折,若摸出
个红球,则打
折;若没摸出红球,则不打折.方案二:从装有
个形状、大小完全相同的小球(其中红球
个,黑球
个)的抽奖盒中,有放回每次摸取
球,连摸
次,每摸到
次红球,立减
元.
(1)若两个顾客均分别消费了
元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;
(2)若某顾客消费恰好满
元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设直线
与抛物线
交于
,
两点,与椭圆
交于
,
两点,直线
,
,
,
(
为坐标原点)的斜率分别为
,
,
,
,若
.
(1)是否存在实数
,满足
,并说明理由;
(2)求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“双十一”已经成为网民们的网购狂欢节,某电子商务平台对某市的网民在今年“双十一”的网购情况进行摸底调查,用随机抽样的方法抽取了100人,其消费金额
(百元)的频率分布直方图如图所示:
(1)求网民消费金额
的平均值和中位数
;
(2)把下表中空格里的数填上,能否有
的把握认为网购消费与性别有关;
![]()
男 | 女 | 合计 | |
| |||
| 30 | ||
合计 | 45 |
附表:
|
|
|
|
|
|
|
|
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】古代数学名著《九章算术》中的“盈不足”问题知两鼠穿垣.今有垣厚5尺,两鼠对穿.大鼠日一尺,小鼠亦一尺.大鼠日自倍,小鼠日自半.问:何日相逢?题意是:由垛厚五尺(旧制长度单位,
尺=
寸)的墙壁,大小两只老鼠同时从墙的两面,沿一直线相对打洞.大鼠第一天打进
尺,以后每天的速度为前一天的
倍;小鼠第一天也打进
尺,以后每天的进度是前一天的一半.它们多久可以相遇?
A.
天 B.
天 C.
天 D.
天
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学用“五点法”画函数
在某一个周期内的图象时,列表并填入了部分数据,如下表:
| 0 |
|
|
|
|
|
|
| |||
| 0 | 2 | 0 | 0 |
(1)请将上表数据补充完整,填写在相应位置,并求出函数
的解析式;
(2)把
的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移
个单位长度,得到函数
的图象,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com