如图,已知四棱锥
,底面
为菱形,
平面
,
,
分别是
的中点.
(1)证明:
;
(2)若
为
上的动点,
与平面
所成最大角的正切值为
,求二面角
的余弦值.![]()
(1)详见解析;(2)
.
解析试题分析:(1)要证明AE⊥PD,我们可能证明AE⊥面PAD,由已知易得AE⊥PA,我们只要能证明AE⊥AD即可,由于底面ABCD为菱形,故我们可以转化为证明AE⊥BC,由已知易我们不难得到结论.
(2)由EH与平面PAD所成最大角的正切值为
,我们分析后可得PA的值,由(1)的结论,我们进而可以证明平面PAC⊥平面ABCD,则过E作EO⊥AC于O,则EO⊥平面PAC,过O作OS⊥AF于S,连接ES,则∠ESO为二面角E-AF-C的平面角,然后我们解三角形ASO,即可求出二面角E-AF-C的余弦值.
(1)证明:由四边形
为菱形,
,可得
为正三角形.
因为
为
的中点,所以
.
又
,因此
.
因为
平面
,
平面
,所以
.
而
平面
,
平面
且
,
所以
平面
.又
平面
,
所以
. 5分
(2)由(1)知
两两垂直,以
为坐标原点,建立如图所示的空间直角坐标系,又
分别为
的中点,所以![]()
,
,
所以
. 8分
设平面
的一法向量为
,
则
因此![]()
取
,则
,
因为
,
,
,所以
平面
,
故
为平面
的一法向量.
又
,所以
. 10分
因为二面角
为锐角,所以所求二面角的余弦值为
. 12分.
考点:1.平面与平面之间的位置关系;2.空间中直线与直线之间的位置关系.
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P—ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=
AD=1,CD=
.![]()
(1)若点M是棱PC的中点,求证:PA∥平面BMQ;
(2)若二面角M—BQ—C为30°,设PM=tMC,试确定t的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线段PB的中点,点M在弧AB上,且OM∥AC.![]()
(1)求证:平面MOE∥平面PAC.
(2)求证:平面PAC⊥平面PCB.
(3)设二面角M—BP—C的大小为θ,求cos θ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和两平面的交线平行.
请对上面定理加以证明,并说出定理的名称及作用.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com