已知抛物线
的焦点为F2,点F1与F2关于坐标原点对称,以F1,F2为焦点的椭圆C过点
.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设点![]()
,过点F2作直线
与椭圆C交于A,B两点,且
,若
的取值范围.
(Ⅰ)椭圆
的标准方程为
;(Ⅱ)
.
解析试题分析:(Ⅰ)由抛物线
的焦点为
,点
与
关于坐标原点对称,以
,
为焦点的椭圆C过点
,故可用待定系数法求椭圆方程,设椭圆
的标准方程为
,由条件求出
即可;(Ⅱ)设点![]()
,过点F2作直线
与椭圆C交于A,B两点,且
,若
的取值范围,这是直线与圆锥曲线交点问题,可采用设而不求的解题思想,设出直线
的方程(注意需讨论斜率不存在情况),与A,B两点坐标,利用根与系数关系来解,当直线斜率不存在时,直接求解A,B的坐标得到
的值,当直线斜率存在时,设出直线方程,和椭圆方程联立后,利用
,消掉点的坐标得到λ与k的关系,根据λ的范围求k的范围,然后把
转化为含有k的函数式,最后利用基本不等式求出
的取值范围.
试题解析:(Ⅰ)设椭圆的半焦距为
,由题意得
,
设椭圆
的标准方程为
,
则
③
④
将④代入③,解得
或
(舍去)
所以
故椭圆
的标准方程为
4分
(Ⅱ)方法一:
容易验证直线
的斜率不为0,设直线
的方程为![]()
将直线
的方程代入
中得:
. 6分
设
,则由根与系数的关系,
可得:
⑤
⑥ 7分
因为
,所以
,且
.
将⑤式平方除以⑥式,得:![]()
由![]()
![]()
所以
10分
因为
,所以
,
又
,所以
,
故![]()
,
令
,因为![]()
所以
,即
,
所以
.
而
,所以
.
所以
. 
科目:高中数学 来源: 题型:解答题
已知A(-5,0),B(5,0),动点P满足|
|,
|
|,8成等差数列.
(1)求P点的轨迹方程;
(2)对于x轴上的点M,若满足|
|·|
|=
,则称点M为点P对应的“比例点”.问:对任意一个确定的点P,它总能对应几个“比例点”?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在
轴上方有一段曲线弧
,其端点
、
在
轴上(但不属于
),对
上任一点
及点
,
,满足:
.直线
,
分别交直线
于
,
两点.![]()
(Ⅰ)求曲线弧
的方程;
(Ⅱ)求
的最小值(用
表示);
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的左右焦点分别是
,离心率
,
为椭圆上任一点,且
的最大面积为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设斜率为
的直线
交椭圆
于
两点,且以
为直径的圆恒过原点
,若实数
满足条件
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,直线l与抛物线
相交于不同的两点A,B.
(I)如果直线l过抛物线的焦点,求
的值;
(II)如果
,证明直线l必过一定点,并求出该定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
过点
,离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
且斜率为
(
)的直线
与椭圆
相交于
两点,直线
、
分别交直线
于
、
两点,线段
的中点为
.记直线
的斜率为
,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知△ABC中, 点A,B的坐标分别为A(-
,0),B(
,0)点C在x轴上方.
(Ⅰ)若点C坐标为(
,1),求以A,B为焦点且经过点C的椭圆的方程:
(Ⅱ)过点P(m,0)作倾斜角为
的直线l交(1)中曲线于M,N两点,若点Q(1,0)恰在以线段MN为直径的圆上,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知,椭圆C过点
,两个焦点为
.
(1)求椭圆C的方程;
(2)
是椭圆C上的两个动点,如果直线
的斜率与
的斜率互为相反数,证明直线
的斜率为定值,并求出这个定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com