精英家教网 > 高中数学 > 题目详情
2.已知在直角坐标系xOy中,圆C1:x2+y2=4,圆C2:x2+(y-2)2=4.
(1)以O为极点,x轴正半轴为极轴建立极坐标系,求圆C1,C2的极坐标方程及其交点的极坐标;
(2)求圆C1与C2公共弦的参数方程.

分析 (1)由x=ρcosα y=ρsinθ,x2+y22,能求出圆C1,C2的极坐标方程,解方程组$\left\{\begin{array}{l}{ρ=2}\\{ρ=4sinθ}\end{array}\right.$,能求出圆C1,C2交点的极坐标.
(2)求出圆C1,C2交点的直角坐标,得到圆C1与C2公共弦过点($\sqrt{3}$,1),倾斜廨$α=\frac{π}{6}$,由此能求出圆C1与C2公共弦的参数方程.

解答 解:(1)由x=ρcosα y=ρsinθ,x2+y22
得圆C1:x2+y2=4的极坐标方程为ρ=2,
圆C2:x2+(y-2)2=4,即C2:x2+y2=4y的极坐标方程为ρ=4sinθ,
解方程组$\left\{\begin{array}{l}{ρ=2}\\{ρ=4sinθ}\end{array}\right.$,得:ρ=2,θ=±$\frac{π}{6}$,
∴圆C1,C2交点的极坐标为(2,$\frac{π}{6}$),(2,-$\frac{π}{6}$).
(2)∵圆C1,C2交点的极坐标为(2,$\frac{π}{6}$),(2,-$\frac{π}{6}$),
∴圆C1,C2交点的直角坐标为$(\sqrt{3},1)$,($\sqrt{3}$,-1).
∴圆C1与C2公共弦过点($\sqrt{3}$,1),斜率k=$\frac{2}{2\sqrt{3}}$=$\frac{\sqrt{3}}{3}$,∴$α=\frac{π}{6}$,
∴圆C1与C2公共弦的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}+\frac{\sqrt{3}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}\right.$.

点评 本题考查圆的极坐标方程及其交点的极坐标的求法,考查圆的公共弦的参数方程的求法,是基础题,解题时要认真审题,注意极坐标方程、直角坐标方程、参数方程互化公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.(1)已知cosα=$\frac{1}{3}$,且-$\frac{π}{2}$<α<0,求$\frac{sin(2π+a)}{tan(-a-π)cos(-a)tan(π+a)}$的值
(2)已知sinθ=-$\frac{4}{5}$,且tanθ>0,求cosθ•sinθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设数列{an}的前n项和为Sn,已知2Sn=3n+3.求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,在四棱锥P-ABCD中,△PAB为等边三角形,AD⊥AB,AD∥BC,平面PAB⊥平面ABCD,E为PD的中点,F为PA中点.
(1)证明:PA⊥平面BEF;
(2)若AD=2BC=2AB=4,求点D到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.以下命题中真命题的序号是(  )
①若棱柱被一平面所截,则分成的两部分不一定是棱柱;
②有两个面平行,其余各面都是梯形的几何体叫棱台;
③用一个平面去截圆锥,底面和截面之间的部分组成的几何体叫圆台;
④有两个面平行,其余各面都是平行四边形的几何体叫棱柱.
A.③④B.①④C.①②④D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=Asin(ωx+φ)(ω>0,0<φ<π)的一段图象如图所示,则过点P(ω,φ),且斜率为A的直线方程是(  )
A.y-$\frac{π}{3}$=$\sqrt{3}$(x-2)B.y-$\frac{2π}{3}$=$\sqrt{3}$(x-4)C.y-$\frac{2π}{3}$=2(x-4)D.y-$\frac{2π}{3}$=2(x-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在长方形ABCD中,AE=EB,三角形BEF的面积占长方形ABCD面积的$\frac{3}{16}$,那么BF:FC=3:1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.对于任意的n∈N*,若数列{an}同时满足下列两个条件,则称数列{an}具有“性质m”:
①$\frac{{{a_n}+{a_{n+2}}}}{2}<{a_{n+1}}$;          
②存在实数M,使得an≤M成立.
(1)数列{an}、{bn}中,an=n(n∈N*)、${b_n}=1-\frac{1}{n^2}$(n∈N*),判断{an}、{bn}是否具有“性质m”;
(2)若各项为正数的等比数列{cn}的前n项和为Sn,且${c_3}=\frac{1}{4}$,${S_3}=\frac{7}{4}$,证明:数列{Sn}具有“性质m”,并指出M的取值范围;
(3)若数列{dn}的通项公式${d_n}=\frac{{t\;(3•{2^n}-n)+1}}{2^n}$(n∈N*).对于任意的n≥3(n∈N*),数列{dn}具有“性质m”,且对满足条件的M的最小值M0=9,求整数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在平面直角坐标系xoy中,椭圆C的标准方程为$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{2}$=1,直线l与x轴交于点E,与椭圆C交于A,B两点.
(1)若点E的坐标为$({\frac{{\sqrt{3}}}{2},0})$,点A在第一象限且横坐标为$\sqrt{3}$,连结点A与原点O的直线交椭圆C于另一点P,求△PAB的面积;
(2)是否存在点E,使得$\frac{1}{{E{A^2}}}+\frac{1}{{E{B^2}}}$为定值?若存在,请指出点E的坐标,并求出该定值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案