【题目】我们把一系列向量
按次序排成一列,称之为向量列,记作
.已知向量列
满足
且
.
(1)证明数列
是等比数列;
(2)求
间的夹角
;
(3)设
,问数列
中是否存在最小项?若存在,求出最小项;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】已知直线
恒过定点
,圆
经过点
和点
,且圆心在直线
上.
(1)求定点
的坐标与圆
的方程;
(2)已知点
为圆
直径的一个端点,若另一个端点为点
,问:在
轴上是否存在一点
,使得
为直角三角形,若存在,求出
的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}中,前m(m为奇数)项的和为77,其中偶数项之和为33,且a1-am=18,则数列{an}的通项公式为an= ______ .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
’(
为参数).以坐标原点为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)求
和
的直角坐标方程;
(2)已知直线
与
轴交于点
,且与曲线
交于
,
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的焦点和上顶点分别为
,定义:
为椭圆
的“特征三角形”,如果两个椭圆的特征三角形是相似三角形,那么称这两个椭圆为“相似椭圆”,且特征三角形的相似比即为相似椭圆的相似比,已知点
是椭圆
的一个焦点,且
上任意一点到它的两焦点的距离之和为4
(1)若椭圆
与椭圆
相似,且
与
的相似比为2:1,求椭圆
的方程.
(2)已知点
是椭圆
上的任意一点,若点
是直线
与抛物线
异于原点的交点,证明:点
一定在双曲线
上.
(3)已知直线
,与椭圆
相似且短半轴长为
的椭圆为
,是否存在正方形
,(设其面积为
),使得
在直线
上,
在曲线
上?若存在,求出函数
的解析式及定义域;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,椭圆
的方程为
,左右焦点分别为
,
,
为短轴的一个端点,且
的面积为
.设过原点的直线
与椭圆
交于
两点,
为椭圆
上异于
的一点,且直线
,
的斜率都存在,
.
(1)求
的值;
(2)设
为椭圆
上位于
轴上方的一点,且
轴,
、
为曲线
上不同于
的两点,且
,设直线
与
轴交于点
,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com