【题目】现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了
人,他们月收入的频数分布及对“楼市限购令”赞成人数如下表.
月收入(单位百元) |
|
|
|
|
|
|
频数 |
|
|
|
|
|
|
赞成人数 |
|
|
|
|
|
|
(1)由以上统计数据填下面
列联表,并问是否有
的把握认为“月收入以
元为分界点对“楼市限购令”的态度有差异;
月收入不低于 | 月收入低于 | 合计 | |
赞成 |
|
| ______________ |
不赞成 |
|
| ______________ |
合计 | ______________ | ______________ | ______________ |
(2)若对在
、
的被调查者中各随机选取两人进行追踪调查,记选中的
人中不赞成“楼市限购令”的人数为
,求随机变量
的分布列及数学期望.
参考公式:
,其中
.
参考值表:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
【答案】(1)列联表见解析,没有
的把握认为月收入以
元为分界点对“楼市限购令”的态度有差异 ;(2)
,分布列见解析.
【解析】
(1)根据题干表格中的数据补充
列联表,并计算出
的观测值,将观测值与
作大小比较,于此可对题中结论进行判断;
(2)由题意得出随机变量
的可能取值有
、
、
、
,然后利用超几何分布概率公式计算出随机变量
在相应取值时的概率,可得出随机变量
的分布列,并计算出该随机变量
的数学期望.
(1)
列联表:
月收入不低于 | 月收入低于 | 合计 | |
赞成 |
|
| ____ |
不赞成 |
|
| ______ |
合计 | _______ | ________ | _____ |
则没有
的把握认为月收入以
元为分界点对“楼市限购令”的态度有差异;
(2)
的所有可能取值有:
、
、
、
.
,
,
,
.
则
的分布列如下表:
|
|
|
|
|
|
|
|
|
|
则
的期望值是:
.
科目:高中数学 来源: 题型:
【题目】以下给出了4个命题:
(1)两个长度相等的向量一定相等;
(2)相等的向量起点必相同;
(3)若
,且
,则
;
(4)若向量
的模小于
的模,则
.
其中正确命题的个数共有( )
A.3 个B.2 个C.1 个D.0个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线
的焦点为F,过点F作垂直于x轴的直线与抛物线交于A,B两点,且以线段AB为直径的圆过点
.
(1)求抛物线C的方程;
(2)设过点
的直线
分别与抛物线C交于点D,E和点G,H,且
,求四边形
面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆
经过点
,左、右焦点分别是
,
,
点在椭圆上,且满足
的
点只有两个.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过
且不垂直于坐标轴的直线
交椭圆
于
,
两点,在
轴上是否存在一点
,使得
的角平分线是
轴?若存在求出
,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某学校的特长班有50名学生,其中有体育生20名,艺术生30名,在学校组织的一次体检中,该班所有学生进行了心率测试,心率全部介于50次/分到75次/分之间,现将数据分成五组,第一组[50,55),第二组[55,60),…,第五组[70,75],按上述分组方法得到的频率分布直方图如图所示.因为学习专业的原因,体育生常年进行系统的身体锻炼,艺术生则很少进行系统的身体锻炼,若前两组的学生中体育生有8名.
![]()
(1)根据频率分布直方图及题设数据完成下列2×2列联表.
心率小于60次/分 | 心率不小于60次/分 | 合计 | |
体育生 | 20 | ||
艺术生 | 30 | ||
合计50 |
(2)根据(1)中表格数据计算可知,________(填“有”或“没有”)99.5%的把握认为“心率小于60次/分与常年进行系统的身体锻炼有关”.
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在同一直角坐标系中,经过伸缩变换
后,曲线C的方程变为
.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,直线/的极坐标方程为
.
(1)求曲线C和直线l的直角坐标方程;
(2)过点
作l的垂线l0交C于A,B两点,点A在x轴上方,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com