精英家教网 > 高中数学 > 题目详情

【题目】曲线 是平面内到定点 的距离与到定直线 的距离之和为 的动点 的轨迹.则曲线 轴交点的坐标是________________;又已知点 为常数),那么 的最小值 ________________

【答案】

【解析】

根据题意,求出曲线的轨迹方程,进而求出与y轴交点坐标。

通过分类讨论,在不同范围内,由曲线方程的意义求得最小值。

(1)设点P坐标为(x,y),因为动点 到定点 的距离与到定直线 的距离之和为

所以

时,代入求得

所以与y轴交点为

(2)当 时,曲线C可以化为

时,曲线C可以化为

,则

解得

时,

所以

时,当直线 相交时,交点P满足取得最小值

因为抛物线准线方程为

所以直线与准线交点坐标为(2,1)

此时

时,当直线 相交时,交点P满足取得最小值

此时抛物线准线方程为

所以直线与准线交点坐标为(-4,1)

此时

综上所述,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司按现有能力,每月收入为70万元,公司分析部门测算,若不进行改革,入世后因竞争加剧收入将逐月减少.分析测算得入世第一个月收入将减少3万元,以后逐月多减少2万元,如果进行改革,即投入技术改造300万元,且入世后每月再投入1万元进行员工培训,则测算得自入世后第一个月起累计收入与时间(以月为单位)的关系为,且入世第一个月时收入将为90万元,第二个月时累计收入为170万元,问入世后经过几个月,该公司改革后的累计纯收入高于不改革时的累计纯收入.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定实数 t,已知命题 p:函数 有零点;命题 q: x∈[1,+∞) ≤4-1.

(Ⅰ)当 t=1 时,判断命题 q 的真假;

(Ⅱ)若 pq 为假命题,求 t 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年入冬以来,各地雾霾天气频发,频频爆表(是指直径小于或等于2.5微米的颗粒物),各地对机动车更是出台了各类限行措施,为分析研究车流量与的浓度是否相关,某市现采集周一到周五某一时间段车流量与的数据如下表:

时间

周一

周二

周三

周四

周五

车流量(万辆)

50

51

54

57

58

的浓度(微克/立方米)

69

70

74

78

79

(1)请根据上述数据,在下面给出的坐标系中画出散点图;

(2)试判断是否具有线性关系,若有请求出关于的线性回归方程,若没有,请说明理由;

(3)若周六同一时间段的车流量为60万辆,试根据(2)得出的结论,预报该时间段的的浓度(保留整数).

参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱柱ABC﹣A1B1C1中,AA1B1B为正方形,BB1C1C为菱形,B1C⊥AC1
(Ⅰ)求证:平面AA1B1B⊥平面BB1C1C;
(Ⅱ)若D是CC1中点,∠ADB是二面角A﹣CC1﹣B的平面角,求直线AC1与平面ABC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法

①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适;②用相关指数可以刻画回归的效果,值越小说明模型的拟合效果越好;③比较两个模型的拟合效果,可以比较残差平方和大小,残差平方和越小的模型拟合效果越好.其中说法正确的是(  )

A. ①② B. ②③ C. ①③ D. ①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:

甲厂:

分组

[29.86,29.90)

[29.90,29.94)

[29.94,29.98)

[29.98,30.02)

[30.02,30.06)

[30.06,30.10)

[30.10,30.14)

频数

12

63

86

182

92

61

4

乙厂:

分组

[29.86,29.90)

[29.90,29.94)

[29.94,29.98)

[29.98,30.02)

[30.02,30.06)

[30.06,30.10)

[30.10,30.14)

频数

29

71

85

159

76

62

18

(1)试分别估计两个分厂生产的零件的优质品率;

(2)由以上统计数据填下面列联表,并问是否有的把握认为“两个分厂生产的零件的质量有差异”.

甲 厂

乙 厂

合计

优质品

非优质品

合计

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是(
A.设p:f(x)=x3+2x2+mx+1是R上的单调增函数, ,则p是q的必要不充分条件
B.若命题 ,则¬p:?x∈R,x2﹣x+1>0
C.奇函数f(x)定义域为R,且f(x﹣1)=﹣f(x),那么f(8)=0
D.命题“若x2+y2=0,则x=y=0”的逆否命题为“若x,y中至少有一个不为0,则x2+y2≠0”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx+ax(a∈R).
(Ⅰ)当a=0,求f(x)的最小值;
(Ⅱ)若函数g(x)=f(x)+lnx在区间[1,+∞)上为增函数,求实数a的取值范围;
(Ⅲ)过点P(1,﹣3)恰好能作函数y=f(x)图象的两条切线,并且两切线的倾斜角互补,求实数a的取值范围.

查看答案和解析>>

同步练习册答案