【题目】某班有男生27名,女生18名,用分层抽样的方法从该班中抽取5名学生去敬老院参加献爱心活动.
(1)求从该班男生、女生中分别抽取的人数;
(2)为协助敬老院做好卫生清扫工作,从参加活动的5名学生中随机抽取2名,求这2名学生均为女生的概率.
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)若
是偶函数,求
的值;
(2)设函数
,当
时,
有且只有一个实数根,求
的取值范围;
(3)若关于
的方程
在区间
上有两个不相等的实数根
,
,证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某机构对某市工薪阶层的收入情况与超前消费行为进行调查,随机抽查了200人,将他们的月收入(单位:百元)频数分布及超前消费的认同人数整理得到如下表格:
月收入(百元) |
|
|
|
|
|
|
频数 | 20 | 40 | 60 | 40 | 20 | 20 |
认同超前消费的人数 | 8 | 16 | 28 | 21 | 13 | 16 |
(1)根据以上统计数据填写下面
列联表,并回答是否有99%的把握认为当月收入以8000元为分界点时,该市的工薪阶层对“超前消费”的态度有差异;
月收入不低于8000元 | 月收入低于8000元 | 总计 | |
认同 | |||
不认同 | |||
总计 |
(2)若从月收入在
的被调查对象中随机选取2人进行调查,求至少有1个人不认同“超前消费”的概率.
参考公式:
(其中
).
附表:
| 0.10 | 0.05 | 0.025 | 0.010 |
| 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经过多年的努力,炎陵黄桃在国内乃至国际上逐渐打开了销路,成为炎陵部分农民脱贫致富的好产品.为了更好地销售,现从某村的黄桃树上随机摘下了100个黄桃进行测重,其质量分布在区间
内(单位:克),统计质量的数据作出其频率分布直方图如图所示:
![]()
(1)按分层抽样的方法从质量落在
,
的黄桃中随机抽取5个,再从这5个黄桃中随机抽2个,求这2个黄桃质量至少有一个不小于400克的概率;
(2)以各组数据的中间数值代表这组数据的平均水平,以频率代表概率,已知该村的黄桃树上大约还有100000个黄桃待出售,某电商提出两种收购方案:
A.所有黄桃均以20元/千克收购;
B.低于350克的黄桃以5元/个收购,高于或等于350克的以9元/个收购.
请你通过计算为该村选择收益最好的方案.
(参考数据:
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在梯形
中,
,
,
,
,
是
的中点,
是
与
的交点,以
为折痕把
折起,使点
到达点
的位置,且
,如图2.
![]()
(1)证明:平面
平面
;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|x=6n﹣1,n∈N*},B={x|x=2n,n∈N*},将A∪B的所有元素从小到大依次排列构成一个数列{an}.记Sn为数列{an}的前n项和,若Sm=3014,则正整数m值为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正实数x,y满足等式
.
(Ⅰ)试将y表示为x的函数
,并求出定义域和值域;
(Ⅱ)是否存在实数m,使得函数
有零点?若存在,求出m的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正四棱柱
中,底面边长为
,侧棱长为
.
(1)求证:平面
平面
;
(2)求直线
与平面
所成的角的正弦值;
(3)设
为截面
内-点(不包括边界),求
到面
,面
,面
的距离平方和的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com