精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)是定义在[1,+∞)上的函数,且f(x)= ,则函数y=2xf(x)﹣3在区间(1,2016)上的零点个数为

【答案】11
【解析】解:令函数y=2xf(x)﹣3=0,得到方程f(x)= ,当x∈[1,2)时,函数f(x)先增后减,在x= 时取得最大值1,
而y= 在x= 时也有y=1;
当x∈[2,22)时,f(x)= ,在x=3处函数f(x)取得最大值
而y= 在x=3时也有y=
当x∈[22 , 23)时,f(x)= ,在x=6处函数f(x)取得最大值
而y= 在x=6时也有y=
…;
当x∈[210 , 211)时,f(x)= ,在x=1536处函数f(x)取得最大值
而y= 在x=1536时也有y=
∴函数y=2xf(x)﹣3在区间(1,2016)上的零点个数为11.
所以答案是:11.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)(xk)ex

(1)f(x)的单调区间;

(2)f(x)在区间[01]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边长分别为a,b,c,且cos
(1)若a=3,b= ,求c的值;
(2)若f(A)=sinA( cosA﹣sinA),求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,a,b∈R,a≠0,b≠0,f(1)= ,且方程f(x)=x有且仅有一个实数解;
(1)求a、b的值;
(2)当x∈( ]时,不等式(x+1)f(x)>m(m﹣x)﹣1恒成立,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 平面 平分 的中点, .

(1)证明: 平面.

(2)证明: 平面.

(3)求直线与平面所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin(x+ )cosx.
(1)若0≤x≤ ,求函数f(x)的值域;
(2)设△ABC的三个内角A,B,C所对的边分别为a,b,c,若A为锐角且f(A)= ,b=2,c=3,求cos(A﹣B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的定义域和值域;

(2)设为实数),求时的最大值

(3)对(2)中,若所有的实数恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题10分)选修4—4:坐标系与参数方程

已知曲线C1的参数方程为t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ

)把C1的参数方程化为极坐标方程;

)求C1C2交点的极坐标(ρ≥0,0≤θ

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着电子商务的发展, 人们的购物习惯正在改变, 基本上所有的需求都可以通过网络购物解决. 小韩是位网购达人, 每次购买商品成功后都会对电商的商品和服务进行评价. 现对其近年的200次成功交易进行评价统计, 统计结果如下表所示.

对服务好评

对服务不满意

合计

对商品好评

80

40

120

对商品不满意

70

10

80

合计

150

50

200

(1) 是否有的把握认为商品好评与服务好评有关? 请说明理由;

(2) 若针对商品的好评率, 采用分层抽样的方式从这200次交易中取出5次交易, 并从中选择两次交易进行观察, 求只有一次好评的概率.

,其中

查看答案和解析>>

同步练习册答案