精英家教网 > 高中数学 > 题目详情
已知z1=x2+,z2=(x2+a)i对于任意x∈R,有|z1|>|z2|成立,试求实数a的取值范围.

分析:复数z与复平面内的向量对应,|z|的几何意义与复数z对应的点到原点O的距离对应.

解:|z1|=,|z2|==|x2+a|.

∵|z1|>|z2|,∴>|x2+a|x4+x2+1>x4+2ax2+a2.

∴(1-2a)x2+(1-a2)>0恒成立.

∴当1-2a=0即a=时,此时0x2+(1)>0恒成立,满足.

即-1<a<.

综上,a的取值范围为(-1,].

绿色通道

    利用复数的几何意义,求模之后,转化为求含参数的二次不等式的参数的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列是关于复数的类比推理:
①复数的加减法运算可以类比多项式的加减法运算法则;
②由实数绝对值的性质|x|2=x2类比得到复数z的性质|z|2=z2
③已知a,b∈R,若a-b>0,则a>b.类比得已知z1,z2∈C,若z1-z2>0,则z1>z2
④由向量加法的几何意义可以类比得到复数加法的几何意义.
其中推理结论正确的是
①④
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列类比推理:
①已知a,b∈R,若a-b=0,则a=b,类比得已知z1,z2∈C,若z1-z2=0,则z1=z2
②已知a,b∈R,若a-b>0,则a>b类比得已知z1,z2∈C,若z1-z2>0,则z1>z2
③由实数绝对值的性质|x|2=x2类比得复数z的性质|z|2=z2
④已知a,b,c,d∈R,若复数a+bi=c+di,则a=c,b=d,类比得已知a,b,c,d∈Q,若a+b
2
=c+d
2
,则a=c,b=d.
其中推理结论正确的是
①④
①④

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列是关于复数的类比推理:
①复数的加减法运算可以类比多项式的加减法运算法则;
②由实数绝对值的性质|x|2=x2类比得到复数z的性质|z|2=z2
③已知a,b∈R,若a-b>0,则a>b.类比得已知z1,z2∈C,若z1-z2>0,则z1>z2
④由向量加法的几何意义可以类比得到复数加法的几何意义.
其中推理结论正确的是______.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年江苏省宿迁市高二(下)质量检测数学试卷(理科)(解析版) 题型:填空题

下列是关于复数的类比推理:
①复数的加减法运算可以类比多项式的加减法运算法则;
②由实数绝对值的性质|x|2=x2类比得到复数z的性质|z|2=z2
③已知a,b∈R,若a-b>0,则a>b.类比得已知z1,z2∈C,若z1-z2>0,则z1>z2
④由向量加法的几何意义可以类比得到复数加法的几何意义.
其中推理结论正确的是   

查看答案和解析>>

科目:高中数学 来源:2008-2009学年北京市海淀区高二(下)期中数学试卷(解析版) 题型:填空题

下列是关于复数的类比推理:
①复数的加减法运算可以类比多项式的加减法运算法则;
②由实数绝对值的性质|x|2=x2类比得到复数z的性质|z|2=z2
③已知a,b∈R,若a-b>0,则a>b.类比得已知z1,z2∈C,若z1-z2>0,则z1>z2
④由向量加法的几何意义可以类比得到复数加法的几何意义.
其中推理结论正确的是   

查看答案和解析>>

同步练习册答案