精英家教网 > 高中数学 > 题目详情

曲线的左焦点为F1,左、右顶点为A1、A2,P为双曲线右支上任意一点,则分别以线段PF1,A1A2为直径的两个圆的位置关系为

A. 相交     B. 内切      C. 相离       D. 外切

B


解析:

:如图在三角形PF1F2  

∴选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知C1
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
3
,直线l:x-y=0与以原点为圆心,以椭圆C1的短半轴长为半径的圆相切,曲线C2以x轴为对称轴.
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F1,右焦点F2,直线l1过点F1且垂直于椭圆的长轴,曲线C2上任意一点M到l1距离与MF2相等,求曲线C2的方程.
(3)若A(x1,2),C(x0,y0),是C2上不同的点,且AB⊥BC,求y0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
3
+
y2
2
=1
的左焦点为F1,右焦点为F2
(Ⅰ)设直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(Ⅱ)设O为坐标原点,取曲线C2上不同于O的点S,以OS为直径作圆与C2相交另外一点R,求该圆的面积最小时点S的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
3
,直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆相切.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M,求动点M的轨迹C2的方程;
(Ⅲ)过椭圆C1的焦点F2作直线l与曲线C2交于A、B两点,当l的斜率为
1
2
时,直线l1上是否存在点M,使AM⊥BM?若存在,求出M的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线的左焦点为F1,左、右顶点为A1、A2,P为双曲线右支上任意一点,则分别以线段PF1,A1A2为直径的两个圆的位置关系为

A. 相交     B. 内切      C. 相离       D. 外切

查看答案和解析>>

同步练习册答案