【题目】如图,在三棱柱
侧面
.
![]()
(1)求证:平面
平面
;
(2)若
,求二面角
的余弦值.
【答案】(1)见解析;(2)![]()
【解析】
(1)要证平面
平面
,转证
平面AB
,即证
,
;
(2) 以G为坐标原点,以
的方向为x轴正方向,以
的方向为y轴正方向,建立如图所示的空间直角坐标系G-xyz.分别求出两个半平面的法向量,代入公式即可得到结果.
(1)如图,设
,连接AG.
因为三棱柱的侧面
为平行四边形,所以G为
的中点,
因为
,
所以
为等腰三角形,所以
,
又因为AB⊥侧面
,且
平面
,
所以![]()
又因为
,
所以
平面AB
,又因为
平面
,
所以平面
平面
;
![]()
(2)由(1)知
平面AB
,所以
B![]()
以G为坐标原点,以
的方向为x轴正方向,以
的方向为y轴正方向,建立如图所示的空间直角坐标系G-xyz.
由
B
易知四边形
为菱形,因为![]()
所以
,
则可得
,
所以![]()
设平面
的法向量
,
由
得:
,取z=1,所以
,
由(1)知
=
为平面AB
的法向量,
则![]()
易知二面角
的余弦值
.
科目:高中数学 来源: 题型:
【题目】现有边长均为1的正方形正五边形正六边形及半径为1的圆各一个,在水平桌面上无滑动滚动一周,它们的中心的运动轨迹长分别为
,
,
,
,则( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线
的参数方程为
(
为参数),以原点
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
(
为实数).
(1)求曲线
的普通方程与曲线
的直角坐标方程;
(2)当
时,设
、
分别为曲线
和曲线
上的动点,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】阿尔法狗(AlphaGo)是第一个击败人类职业围棋选手、第一个战胜围棋世界冠军的人工智能程序,由谷歌(Google)公司的团队开发.其主要工作原理是“深度学习”.2017 年5 月,在中国乌镇围棋峰会上,它与排名世界第一的世界围棋冠军柯洁对战,以3 比0 的总比分获胜.围棋界公认阿尔法围棋的棋力已经超过人类职业围棋顶尖水平.
为了激发广大中学生对人工智能的兴趣,某市教育局组织了一次全市中学生“人工智能”软件设计竞赛,从参加比赛的学生中随机抽取了30 名学生,并把他们的比赛成绩按五个等级进行了统计,得到如下数据表:
成绩等级 |
|
|
|
|
|
成绩(分) | 5 | 4 | 3 | 2 | 1 |
人数(名) | 4 | 6 | 10 | 7 | 3 |
(1)根据上面的统计数据,试估计从本市参加比赛的学生中任意抽取一人,其成绩等级为“
或
”的
概率;
(2)根据(I)的结论,若从该地区参加比赛的学生(参赛人数很多)中任选3 人,记
表示抽到成绩等级为“
或
”的学生人数,求
的分布列及其数学期望
;
(3)从这30 名学生中,随机选取2 人,求“这两个人的成绩之差大于1分”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某烘焙店加工一个成本为60元的蛋糕,然后以每个120元的价格出售,如果当天卖不完,剩下的这种蛋糕作餐厨垃圾处理.
(1)若烘焙店一天加工16个这种蛋糕,,求当天的利润
(单位:元)关于当天需求量
(单位:个,
)的函数解析式;
(2)烘焙店记录了100天这种蛋糕的日需求量(单位:个),整理得下表:
日需求量 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
频数 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
①若烘焙店一天加工16个这种蛋糕,
表示当天的利润(单位:元),求
的分布列与数学期望及方差;
②若烘焙店一天加工16个或17个这种蛋糕,仅从获得利润大的角度考虑,你认为应加工16个还是17个?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大型工厂招聘到一大批新员工.为了解员工对工作的熟练程度,从中随机抽取100人组成样本,统计他们每天加工的零件数,得到如下数据:
![]()
将频率作为概率,解答下列问题:
(1)当
时,从全体新员工中抽取2名,求其中恰有1名日加工零件数达到240及以上的概率;
(2)若根据上表得到以下频率分布直方图,估计全体新员工每天加工零件数的平均数为222个,求
的值(每组数据以中点值代替);
![]()
(3)在(2)的条件下,工厂按工作熟练度将新员工分为三个等级:日加工零件数未达200的员工为C级;达到200但未达280的员工为B级;其他员工为A级.工厂打算将样本中的员工编入三个培训班进行全员培训:A,B,C三个等级的员工分别参加高级、中级、初级培训班,预计培训后高级、中级、初级培训班的员工每人的日加工零件数分别可以增加20,30,50.现从样本中随机抽取1人,其培训后日加工零件数增加量为X,求随机变量X的分布列和期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com