ÒÑÖªÊýÁÐ{an}Âú×㣺an=logn+1£¨n+2£©£¬n¡ÊN+£¬ÎÒÃǰÑʹa1•a2•¡­•akΪÕûÊýµÄÊýk£¨k¡ÊN*£©½Ð×öÊýÁÐ{an}µÄÀíÏëÊý£®¸ø³öÏÂÁйØÓÚÊýÁÐ{an}µÄ¼¸¸ö½áÂÛ£º
¢ÙÊýÁÐ{an}µÄ×îСÀíÏëÊýÊÇ2£®
¢Ú{an}µÄÀíÏëÊýkµÄÐÎʽ¿ÉÒÔ±íʾΪk=4n-2£¨n¡ÊN+£©£®
¢Û¶ÔÈÎÒân¡ÊN+£¬ÓÐan+1£¼an£®
¢ÜÊýѧ¹«Ê½£®
ÆäÖÐÕýÈ·½áÂÛµÄÐòºÅΪ________£®

¢Ù¢Û
·ÖÎö£ºÓÉ£¬Öªa1•a2•¡­•ak=log2£¨n+2£©£®log2£¨n+2£©ÎªÕûÊýµÄ×îСµÄn=2£¬ÊýÁÐ{an}µÄ×îСÀíÏëÊýÊÇ2£®{an}µÄÀíÏëÊýkµÄÐÎʽ¿ÉÒÔ±íʾΪk=2n-1£¬¶ÔÈÎÒân¡ÊN*£¬ÓÐan+1£¼an£®=1£¬¹ÊÕýÈ·½áÂÛµÄÐòºÅΪ¢Ù¢Û£®
½â´ð£º£¬
¡àa1•a2•¡­•ak=log2£¨n+2£©£®
¡ßk¡ÊN*£¬¡àlog2£¨n+2£©ÎªÕûÊýµÄ×îСµÄn=2£¬ÊýÁÐ{an}µÄ×îСÀíÏëÊýÊÇ2£®¹Ê¢ÙÕýÈ·£»
{an}µÄÀíÏëÊýkµÄÐÎʽ¿ÉÒÔ±íʾΪk=2n-1£¬¹Ê¢Ú²»³ÉÁ¢£»
¶ÔÈÎÒân¡ÊN*£¬ÓÐan+1£¼an£®¹Ê¢Û³ÉÁ¢£»
=1£¬¹Ê¢Ü²»³ÉÁ¢£®
¹ÊÕýÈ·´ð°¸Îª¢Ù¢Û£®
µãÆÀ£º±¾Ì⿼²éÊýÁеÄÐÔÖʺÍÓ¦Ó㬽âÌâʱҪעÒ⹫ʽµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}Âú×㣺a1=1ÇÒan+1=
3+4an
12-4an
£¬ n¡ÊN*
£®
£¨1£©ÈôÊýÁÐ{bn}Âú×㣺bn=
1
an-
1
2
(n¡ÊN*)
£¬ÊÔÖ¤Ã÷ÊýÁÐbn-1ÊǵȱÈÊýÁУ»
£¨2£©ÇóÊýÁÐ{anbn}µÄǰnÏîºÍSn£»
£¨3£©ÊýÁÐ{an-bn}ÊÇ·ñ´æÔÚ×î´óÏÈç¹û´æÔÚÇó³ö£¬Èô²»´æÔÚ˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}Âú×ã
1
2
a1+
1
22
a2+
1
23
a3+¡­+
1
2n
an=2n+1
Ôò{an}µÄͨÏʽ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}Âú×㣺a1=
3
2
£¬ÇÒan=
3nan-1
2an-1+n-1
£¨n¡Ý2£¬n¡ÊN*£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Ö¤Ã÷£º¶ÔÓÚÒ»ÇÐÕýÕûÊýn£¬²»µÈʽa1•a2•¡­an£¼2•n£¡

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}Âú×ãan+1=|an-1|£¨n¡ÊN*£©
£¨1£©Èôa1=
54
£¬Çóan£»
£¨2£©Èôa1=a¡Ê£¨k£¬k+1£©£¬£¨k¡ÊN*£©£¬Çó{an}µÄǰ3kÏîµÄºÍS3k£¨ÓÃk£¬a±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•±±¾©Ä£Ä⣩ÒÑÖªÊýÁÐ{an}Âú×ãan+1=an+2£¬ÇÒa1=1£¬ÄÇôËüµÄͨÏʽanµÈÓÚ
2n-1
2n-1
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸